Abstract:
The invention relates generally to welding and, more specifically, to welding wires for arc welding, such as Gas Metal Arc Welding (GMAW) or Flux Core Arc Welding (FCAW). In one embodiment, a tubular welding wire includes a sheath and a core. The tubular welding wire is configured to form a weld deposit on a structural steel workpiece, wherein the weld deposit includes less than approximately 2.5% manganese by weight.
Abstract:
A welding system includes a welding power source configured to provide pulsed electropositive direct current (DCEP), a gas supply system configured to provide a shielding gas flow that is at least 90% argon (Ar), a welding wire feeder configured to provide tubular welding wire. The DCEP, the tubular welding wire, and the shielding gas flow are combined to form a weld deposit on a zinc-coated workpiece, wherein less than approximately 10 wt % of the tubular welding wire is converted to spatter while forming the weld deposit on the zinc-coated workpiece.
Abstract:
The present disclosure relates to new metal powders for use in additive manufacturing, and aluminum alloy products made from such metal powders via additive manufacturing. The composition(s) and/or physical properties of the metal powders may be tailored. In turn, additive manufacturing may be used to produce a tailored aluminum alloy product.
Abstract:
A wire including, in terms of % by mass with respect to a total mass of the wire, as a total in a steel outer skin and a flux, 0.03 to 0.08% of C, 0.1 to 0.6% of Si, 1.2 to 2.5% of Mn, 0.01 to 0.5% of Cu, 0.5 to 1.5% of Ni, 0.05 to 0.5% of Ti, 0.002 to 0.015% of B, and 0.05% or less of Al, and further including, in the flux, 4 to 8% in terms of TiO2, 0.1 to 0.6% of in terms of SiO2, 0.02 to 0.3% in terms of Al2O3, 0.1 to 0.8% of Mg, 0.05 to 0.3% in terms of F, 0.05 to 0.3% in terms of Na and K in a fluorine compound, 0.05 to 0.2% of Na2O and K2O, and 0.2% or less in terms of ZrO2.
Abstract:
The present invention relates to a flux cored electrode used in electric arc welding and more particularly to the use of a specific form of magnesium particles in the core of the electrode or wire.
Abstract:
In a flux-cored wire according to the present invention, CaF2 and the like are included and a total amount thereof α is 3.3 to 6.0% in terms of mass % with respect to a total mass, Ti oxide and the like are included and a total amount thereof β is 0.4 to 1.2% in terms of mass % with respect to the total mass, CaCO3 and the like are included and a total amount thereof is 0.1 to 0.5% in terms of mass % with respect to the total mass, and an amount of an iron powder in the flux is less than 10% in terms of mass % with respect to the total mass.
Abstract:
A brazing rod for forming a wear resistant coating on a substrate by a brazing process. The brazing rod includes a composite material having a plurality of round particles bound together by a binding material. Each of the plurality of round particles includes a round outer layer encapsulating a wear resistant element.
Abstract:
The present invention provides flux cored wire for welding duplex stainless steel which refines the solidified crystal grains for obtaining weld metal superior in toughness and ductility, characterized by containing, as the chemical ingredients included in the steel sheath and flux, by mass % with respect to the mass of the wire as a whole, C: 0.001 to 0.1%, Si: 0.01 to 1.0%, Mn: 2.0 to 6.0%, Cr: 17.0 to 27.0%, Ni: 1.0 to 10.0%, Mo: 0.1 to 3.0%, Al: 0.002 to 0.05%, Mg: 0.0005 to 0.01%, Ti: 0.001 to 0.5%, and N: 0.10 to 0.30%, further limiting P to 0.03% or less and S to 0.01% or less, satisfying 0.73×Cr equivalents−Ni equivalents≧4.0 and Ti (mass %)×N (mass %)≧0.0004, and having a balance of iron and unavoidable impurities.
Abstract:
A method for joining, assembling, at least two parts made of silicon carbide-based materials by non-reactive brazing is provided. According to the method, the parts are contacted with a non-reactive brazing composition, the assembly formed by the parts and the brazing composition is heated to a brazing temperature sufficient to melt the brazing composition totally or at least partly, and the parts and the brazing composition are cooled so that, after solidification of the brazing composition, a moderately refractory joint is formed; wherein the non-reactive brazing composition is a binary alloy consisting in atomic percentages, of 60% to 66% silicon and 34 to 40% nickel. A brazing composition as defined above is also provided. A paste, suspension of braze alloy comprising a powder of the brazing composition and an organic binder is provided. In addition, a joint and assembly obtained with the foregoing method is provided.