Abstract:
A heat treatment oil composition is provided that is capable of reducing the fluctuation in cooling capability among components subjected to mass quenching while retaining a cooling capability equivalent to the No. 1 oil of Class 2 of JIS K2242:2012 in a heat treatment of a metal material, such as quenching, and is capable of suppressing deterioration in cooling capability thereof with the lapse of time under repetition of the heat treatment. The heat treatment oil composition contains (A) a base oil and (B) at least one selected from a petroleum resin and/or a derivative of a petroleum resin, and has a characteristic time obtained from a cooling curve obtained according to the cooling capability test method of JIS K2242:2012 of 1.00 second or less and a 300° C. number of second, which is a cooling time from 800° C. to 300° C. in the cooling curve, of 6.00 seconds or more and 14.50 seconds or less.
Abstract:
An electrical insulating oil composition comprising a heavy reformate as an anti-gassing agent is provided with excellent gassing tendency. In one embodiment, the composition displays a gassing performance of
Abstract:
This invention describes a refrigerating oil composition for natural substance-based refrigerants which comprises (A) a synthetic oil component comprising a polyether compound having a pour point of −10° C. or lower and (B) a mineral oil component comprising sulfur components, wherein the ratio of amounts by weight of component (A) to component (B) is in the range of 25:75 to 99:1 and the amount of the sulfur components derived from component (B) in the composition is in the range of 5 to 1,000 ppm. The refrigerating oil composition has excellent miscibility with natural substance-based refrigerants and, in particular, with ammonia-based refrigerants, exhibits an improved lubricity and used for industrial refrigerators using natural substance-based refrigerants such as ammonia, propane, butane and carbon dioxide.
Abstract:
A food container conveyor device having improved lubricant properties can be lubricated using a lubricant composition that can become ingested by a user from a food or a container for the food, can come into incidental contact or direct content with a food composition, can be incorporated at measurable concentrations into the food, or can be used generally on food conveyor surfaces wherein the food is exposed to the lubricant. Such lubricant compositions can be formulated in aqueous or non-aqueous compositions containing approved lubricant ingredients. Food containers lubricated using the compositions of the invention can be distributed to the public even in the substantial occurrence of contact between the food composition and the approved lubricant materials.
Abstract:
A low sulfur detergency additive suitable for lubricant composition used in air-cooled two-stroke cycle engines having an unsulfurized alkaline earth alkylsalicylate and optionally a molybdenum compound.
Abstract:
In a fluid for electrical discharge machining, a low viscosity mineral or synthetic oil is used as the base oil, to which is added ultrahigh-viscosity oil, the low viscosity oil raising the efficiency of chip removal from the workpiece-to-electrode gap adequately cooling said gap, while the addition of ultrahigh viscosity oil enables the voltage across the discharge electrodes to be increased, allowing an even larger amount of electrical discharge energy to be applied to the workpiece-to-electrode gap, providing a fluid for electrical discharge machining which enables discharge efficiency to be greatly raised and discharge machining speed to be increased.
Abstract:
This invention describes a refrigerating oil composition for natural substance-based refrigerants which comprises (A) a synthetic oil component comprising a polyether compound having a pour point of −10° C. or lower and (B) a mineral oil component comprising sulfur components, wherein the ratio of amounts by weight of component (A) to component (B) is in the range of 25:75 to 99:1 and the amount of the sulfur components derived from component (B) in the composition is in the range of 5 to 1,000 ppm. The refrigerating oil composition has excellent miscibility with natural substance-based refrigerants and, in particular, with ammonia-based refrigerants, exhibits an improved lubricity and used for industrial refrigerators using natural substance-based refrigerants such as ammonia, propane, butane and carbon dioxide.