摘要:
The present invention relates to a variant polypeptide having fumarate reductase activity, which has modified NADP(H)-dependent and/or NAD(H)-dependent activity as compared with a reference polypeptide having fumarate reductase activity. Such a variant may be overexpressed in a host cell in order to improve production of a dicarboxylic acid.
摘要:
A process for the production of malic acid in commercially significant quantities from the carbon compounds by genetically modified bacterial strains (GMBS; also referred to as biocatalysts or genetically modified microorganisms) is disclosed. Microorganisms suitable for the production of malic acid can be cultured in one or two-step processes as disclosed herein.
摘要:
A process for the production of malic acid in commercially significant quantities from the carbon compounds by genetically modified bacterial strains (GMBS; also referred to as biocatalysts or genetically modified microorganisms) is disclosed. Microorganisms suitable for the production of malic acid can be cultured in one or two-step processes as disclosed herein.
摘要:
The present invention relates to a variant polypeptide having fumarate reductase activity, which has modified NADP(H)-dependent and/or NAD(H)-dependent activity as compared with a reference polypeptide having fumarate reductase activity. Such a variant may be overexpressed in a host cell in order to improve production of a dicarboxylic acid.
摘要:
The present application provides genetically modified yeast cell comprising an active succinate fermentation pathway, as well as methods of using these cells to produce succinate.
摘要:
The present application provides genetically modified yeast cell comprising an active succinate fermentation pathway, as well as methods of using these cells to produce succinate.
摘要:
The present application provides genetically modified yeast cell comprising an active succinate fermentation pathway, as well as methods of using these cells to produce succinate.
摘要:
A combination of an electrochemical device for delivering reducing equivalents to a cell, and engineered metabolic pathways within the cell capable of utilizing the electrochemically provided reducing equivalents is disclosed. Such a combination allows the production of commodity chemicals by fermentation to proceed with increased carbon efficiency.