Abstract:
A chromatographic column assembly is described, comprising a channel and a flow inducer. The channel comprises an inlet for receiving a sample liquid and an outlet, and is adapted for separating the sample liquid into components when the sample liquid flows through the channel in an axial direction from the inlet to the outlet. The flow inducer is adapted for controllably inducing, when the sample fluid is flowing through the channel, a motion of the sample liquid in the channel in a plane substantially orthogonal to the axial direction.
Abstract:
Disclosed herein are methods and devices for coherent nonlinear chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a particle produces a secondary flow or particle motion component which competes with a primary flow. Depending on the interaction, the particle may be retained and redirected and therefore separated from other particles.
Abstract:
Methods are described for measuring the amount of a methylation TPMT enzyme product in a sample. More specifically, mass spectrometric methods are described for detecting and quantifying 6-MMP or isotopically labeled 6-MMP in a test sample utilizing mass spectrometric techniques and for using such methods to determine the activity of TPMT enzyme that is present in a sample.
Abstract:
The present invention is directed to a microfluidic chromatography apparatus comprising a microfabricated fluid delivery system and a chromatography column which is in fluid communication with the fluid delivery system, and a method for producing and using the same. Preferably, the chromatography column comprises an OTLC, PCLC, or combinations thereof.
Abstract:
A system for separating compounds of relatively low molecular weight substantially not greater than about one kilodalton from compounds having relatively high molecular weights substantially an order of magnitude greater or more than the low molecular weight compounds in a liquid mixture. The system includes a chromatographic column packed with uniformly distributed rigid, solid, porous particles having chromatographically active, hydrophobic surfaces, average diameters of not less than about 30 .mu.m, and average pore diameters sufficiently small to substantially exclude introduction of the compounds of relatively high molecular weight into the pores. The mixture is pumped through the interstitial volume between the particles at a reduced velocity greater than about 5,000, until a band of the high molecular weight compounds exits the column. The low molecular weight compounds are then eluted and are recovered separately from the relatively high molecular weight compounds. Spectrographic identification of the recovered low molecular weight compounds can then be made, preferably by ultraviolet absorption or by mass spectrograph.
Abstract:
The present invention provides a process for carrying out analytical determinations by mixing and incubating a sample solution with at least one reagent and optically measuring a parameter in the incubated reaction mixture. The mixing, incubating and measuring are carried out during the action of a centrifugal force which forces the solution through a plurality of interconnected small hollow spaces having flow resistance so adapted with regard to one another as to mix the reaction components. Incubation may also take place before the reaction solution passes from the plurality of interconnected small hollow spaces into a measuring chamber in which the measurement is carried out.
Abstract:
THE PROGRESS OF A CHROMATOGRAPHIC SEPARATION IS MONITORED AT ANY DESIRED LOCALITY OF THE CHROMATOGRAPHIC SYSTEM BY OBSERVING AT A SOLID DETECTION ELECTRODE WITH REFERENCE TO A REFERENCE ELECTRODE ANY DETECTABLE CONSTITUTION AND CONCENTRATION DEPENDENT ELECTRICAL QUANTITY, E.G. CONDUCTIVITY, ELECTROLYTIC CURRENT, CAPACITANCE, ZETA-PHENOMENA OR A COMBINATION OF SUPERIMPOSED QUANTITIES.
Abstract:
Methods are described for measuring the amount of a methylation TPMT enzyme product in a sample. More specifically, mass spectrometric methods are described for detecting and quantifying 6-MMP or isotopically labeled 6-MMP in a test sample utilizing mass spectrometric techniques and for using such methods to determine the activity of TPMT enzyme that is present in a sample.
Abstract:
Methods are described for measuring the amount of a methylation TPMT enzyme product in a sample. More specifically, mass spectrometric methods are described for detecting and quantifying 6-MMP or isotopically labeled 6-MMP in a test sample utilizing mass spectrometric techniques and for using such methods to determine the activity of TPMT enzyme that is present in a sample.