Abstract:
The present invention discloses a MEMS device. The MEMS device includes a substrate, a proof mass, a frame spring and an anchor. The proof mass is connected to the substrate through the frame spring and the anchor. The proof mass includes a proof mass body, a proof mass frame surrounding the proof mass body, a linking element connecting the proof mass body to the proof mass frame, and a stopper between the proof mass body and the proof mass frame in a displacement direction to limit the displacement of the proof mass body. The stopper is connected to the proof mass frame as a part of the proof mass and contributes to the mass quantity of the proof mass.
Abstract:
There is provided an angular velocity sensor including first and second mass bodies provided within a first frame, a first flexible connector system connecting the first and second mass bodies and the first frame and that includes at least one sensor to detect displacements of the first and second mass bodies, a second flexible connector system connecting the first frame to a second frame provided separate from the first frame and that includes a driver to drive movement of the first frame relative to the second frame, so angular velocities can be measured based on the first and second mass bodies being enabled to rotate in a first axis direction and translated in a second axis direction, and based on the first frame being flexibly connected to the second frame so that a rotation displacement of the first frame is made in a third axis direction.
Abstract:
A capacitive acceleration sensor with an “H”-shaped beam and a preparation method. The sensor at least includes: a first electrode structural layer, a middle structural layer and a second electrode structural layer; the first electrode structural layer and the second electrode structural layer are provided with electrode lead via holes, respectively; the middle structural layer includes: a frame formed at SOI silicon substrate having a double device layer, a seismic mass whose double sides are symmetrical, and an “H”-shaped elastic beam whose double sides are symmetrical, with one end connected to the frame and the other end connected to the seismic mass, there are anti-overloading bumps and damping grooves symmetrically provided on the two sides of the seismic mass, and the “H”-shaped elastic beam and a bulk silicon layer of the oxygen containing silicon substrate satisfy the requirements therebetween: √{square root over (2)}(a+b+c)
Abstract:
Systems and methods for a time-based optical pickoff for MEMS sensors are provided. In one embodiment, a method for an integrated waveguide time-based optical-pickoff sensor comprises: launching a light beam generated by a light source into an integrated waveguide optical-pickoff monolithically fabricated within a first substrate, the integrated waveguide optical-pickoff including an optical input port, a coupling port, and an optical output port; and detecting changes in an area of overlap between the coupling port and a moving sensor component separated from the coupling port by a gap by measuring an attenuation of the light beam at the optical output port, wherein the moving sensor component is moving in-plane with respect a surface of the first substrate comprising the coupling port and the coupling port is positioned to detect movement of an edge of the moving sensor component.
Abstract:
An acoustic sensor includes a back plate; at least one back plate electrode coupled to the back plate; a proof of mass with the proof of mass elastically coupled to the back plate; and a proof of mass electrode coupled to the proof of mass. Movement of the sensor causes a capacitance between the proof of mass electrode and the at least one back plate electrode to vary and the capacitance represents a magnitude of the movement of the sensor.
Abstract:
This document discusses, among other things, an inertial sensor including a single proof-mass formed in an x-y plane of a device layer, the single proof-mass including a single, central anchor configured to suspend the single proof-mass above a via wafer. The inertial sensor further includes first and second electrode stator frames formed in the x-y plane of the device layer on respective first and second sides of the inertial sensor, the first and second electrode stator frames symmetric about the single, central anchor, and each separately including a central platform and an anchor configured to fix the central platform to the via wafer, wherein the anchors for the first and second electrode stator frames are asymmetric along the central platforms with respect to the single, central anchor.
Abstract:
An acoustic sensor includes a back plate; at least one back plate electrode coupled to the back plate; a proof of mass with the proof of mass elastically coupled to the back plate; and a proof of mass electrode coupled to the proof of mass. Movement of the sensor causes a capacitance between the proof of mass electrode and the at least one back plate electrode to vary and the capacitance represents a magnitude of the movement of the sensor.
Abstract:
There is provided an angular velocity sensor including first and second mass bodies provided within a first frame, a first flexible connector system connecting the first and second mass bodies and the first frame and that includes at least one sensor to detect displacements of the first and second mass bodies, a second flexible connector system connecting the first frame to a second frame provided separate from the first frame and that includes a driver to drive movement of the first frame relative to the second frame, so angular velocities can be measured based on the first and second mass bodies being enabled to rotate in a first axis direction and translated in a second axis direction, and based on the first frame being flexibly connected to the second frame so that a rotation displacement of the first frame is made in a third axis direction.
Abstract:
The present invention discloses a Z-axis structure of an accelerometer and a manufacturing method of the Z-axis structure. The Z-axis structure comprises a substrate, fixed electrodes and a mass block, wherein first anchor is arranged on a surface of the substrate; the fixed electrode is connected onto the corresponding first anchor at an end thereof; the fixed electrode is suspended above the substrate via the first anchor; an intermediate anchor is also arranged on the surface of the substrate; and the mass block is suspended above the fixed electrode via the intermediate anchor. In the Z-axis structure of the present invention, the fixed electrode is connected to the substrate by the first anchor, so that there is certain gap between the fixed electrode and the substrate. Because of the gap, the path for deformation to transmitting from the substrate to the fixed electrode is cut off, such that contact area between the fixed electrode and the substrate is reduced, effectively preventing the deformation of the substrate caused by changes of external stress and temperature from transmitting to the fixed electrode, and greatly reducing zero point offset of a Z-axis structure.
Abstract:
An acoustic sensor includes a back plate; at least one back plate electrode coupled to the back plate; a proof of mass with the proof of mass elastically coupled to the back plate; and a proof of mass electrode coupled to the proof of mass. Movement of the sensor causes a capacitance between the proof of mass electrode and the at least one back plate electrode to vary and the capacitance represents a magnitude of the movement of the sensor.