Abstract:
Disclosed are examples of systems, apparatus, methods and computer program products for locating unmanned aerial vehicles (UAVs). A region of airspace may be scanned with two scanning apparatuses. Each scanning apparatus may include one or more directional Radio Frequency (RF) antennae. The two scanning apparatuses may have different locations. Radio frequency signals emitted by a UAV can be received at each of the two scanning apparatuses. The received radio frequency signals can be processed to determine a first location of the UAV.
Abstract:
A system to track personnel includes an antenna array associated with a first node to communicate with a second node; and processor circuitry. The processor circuitry to: determine a plurality of positions of the second node; determine a distance between the first node and the second node; determine a bearing between the first node and at least one of the positions; and determine a direction for the first node based on the bearing.
Abstract:
Motion tracking systems and methods for determining how a plurality of trackers is positioned on a plurality of body members of a person may include: wirelessly receiving, by a computing device, one or more first data packets of each tracker of the plurality of trackers; digitally determining a first direction in which the computing device is relative to the respective tracker by computing an angle of departure of the one or more first data packets; digitally determining based on the first directions, a second direction in which each tracker of the plurality of trackers is relative to one or more other trackers of the plurality of trackers; and digitally determining on which body member is each tracker of the plurality of trackers positioned on the person at least based on both the second directions and the plurality of body members requiring to have a tracker positioned thereon.
Abstract:
In one aspect, a process for position estimation entails obtaining (a) at least one direct distance estimate corresponding to a distance between one or more intervening devices, (b) at least one direct angle estimate corresponding to a spanning angle formed involving the one or more intervening devices, or both (a) and (b). Based on (a) the at least one direct distance estimate corresponding to the distance between devices including the one or more intervening devices, (b) the at least one direct angle estimate corresponding to the spanning angle formed involving the one or more intervening devices, or both (a) and (b), an indirect distance estimate between a first device and a second device or an indirect angle estimate involving the first device and the second device is determined. The first device and the second device may be out of range with respect to one another for a direct distance measurement.
Abstract:
Systems and methods for tracking a target depression angle relative to a reference location. In accordance with some embodiments, the system comprises a set of algorithms and pilot displays that use data from an onboard navigation system to calculate an asset's location relative to a reference location, allowing for precise control of relative geometry for the purposes of system measurement and performance assessment. The system provides a pilot with tracking error and steering cues along a flight profile, allowing for closed-loop tracking of target depression angle (body axis elevation) while sweeping look angle (body axis azimuth) relative to a static or dynamic reference location.
Abstract:
Disclosed are examples of systems, apparatus, methods and computer program products for locating unmanned aerial vehicles (UAVs). A region of airspace may be scanned with two scanning apparatuses. Each scanning apparatus may include one or more directional Radio Frequency (RF) antennae. The two scanning apparatuses may have different locations. Radio frequency signals emitted by a UAV can be received at each of the two scanning apparatuses. The received radio frequency signals can be processed to determine a first location of the UAV.
Abstract:
An electromagnetic radiation source locating system including an electromagnetic radiation sensor including an antenna configured to detect a radiant energy transmission. A position detector is in communication with the controller and is configured to detect the position of the antenna relative to a reference coordinate system, while an orientation sensor is in communication with the controller and is configured to detect the orientation of the antenna and provide an orientation signal to the controller. A range sensor is configured to detect the distance to an aligned object in the path of a directional vector and provide a distance signal indicative thereof to the controller. An aerial vehicle may be in communication with the controller and configured to drop a marker for guiding navigators to the source of the radiant energy transmission.
Abstract:
The present invention relates to a method for determining a direction to a signal-emitting object by means of a platform comprising at least two antennas separated by a known distance. The method comprises said steps of: receiving, with each of said at least two antennas, a signal from said signal-emitting object at first positions, determining a first phase relation of said signal between said at least two antennas, —receiving, with each of said at least two antennas, a signal from said signal-emitting object at at least second positions, determining at least a second phase relation of said signal between said at least two antennas, characterized by the steps of: determining change(s) in position(s) of at least one antenna of said at least two antennas, and determining a direction to a signal-emitting object based on said first phase relation, said at least second phase relation and said change(s) in position(s) of said at least one antenna. The invention further relates to a platform performing a determination of a direction to a signal-emitting object.
Abstract:
A method of kinematic ranging for finding the range R of a jammer moving on a trajectory involves measuring the bearing of the jammer and the rate of change thereof using an airborne detector radar at a first position (24), causing the airborne detector radar to carry out a manoeuvre such that is it displaced in the horizontal plane by a displacement having orthogonal components Δx, Δy, and measuring the bearing of the jammer at a second position subsequent to the manoeuvre. By making an appropriate choice for the components Δx, Δy, the range R may be found with a desired relative range accuracy, and the error in R may be minimized.
Abstract:
Present novel and non-trivial system, apparatus, and method for generating at least one airport surface incursion alert in a runway awareness and warning system are disclosed. A navigation data source and an airport surface data source provide navigation data and airport surface data to a surface alert generator (“SAG”). The SAG constructs a reference line based upon the airport surface data (e.g., landing threshold points, taxiway hold short lines, etc. . . . ), constructs a ground track line, determines at least one alert distance to an alert point along the ground track line if there is a reference line converging on and intersecting with the ground track line to form an alert point, and generates surface alert data if an alert time to the alert point meets an alert threshold time. The surface alert data is provided to a presentation system in which a visual alert, aural alert, and/or tactile alert is presented.