摘要:
In accordance with an example embodiment of the present invention, a device comprising one or more porous graphene layers, the or each graphene porous layer comprising a multiplicity of pores. The device may form at least part of a flexible and/or stretchable, and or transparent electronic device.
摘要:
An n-type diamond epitaxial layer 20 is formed by processing a single-crystalline {100} diamond substrate 10 so as to form a {111} plane, and subsequently by causing diamond to epitaxially grow while n-doping the diamond {111} plane. Further, a combination of the n-type semiconductor diamond, p-type semiconductor diamond, and non-doped diamond, obtained in the above-described way, as well as the use of p-type single-crystalline {100} diamond substrate allow for a pn junction type, a pnp junction type, an npn junction type and a pin junction type semiconductor diamond to be obtained.
摘要:
Some embodiments include methods of forming graphene-containing switches. A bottom electrode may be formed over a base, and a first electrically conductive structure may be formed to extend upwardly from the bottom electrode. Dielectric material may be formed along a sidewall of the first electrically conductive structure, while leaving a portion of the bottom electrode exposed. A graphene structure may be formed to be electrically coupled with the exposed portion of the bottom electrode. A second electrically conductive structure may be formed on an opposing side of the graphene structure from the first electrically conductive structure. A top electrode may be formed over the graphene structure and electrically coupled with the second electrically conductive structure. The first and second electrically conductive structures may be configured to provide an electric field across the graphene structure.
摘要:
Embodiments of the present invention provide an array substrate, a manufacturing method thereof and a display device. The manufacturing method of an array substrate, comprising: forming a gate electrode on a base substrate by a first patterning process, and then depositing a gate insulating layer on the base substrate on which the gate electrode is formed; forming source and drain electrodes on the base substrate obtained after the above step, by a second patterning process; forming an active layer formed of a graphene layer, and a protective layer disposed on the active layer, on the base substrate obtained after the above steps, by a third patterning process; and forming a planarizing layer on the base substrate, obtained after the above steps, by a fourth patterning process, in which the planarizing layer is provided with a through hole through which the source or drain electrode is exposed.
摘要:
Some embodiments include methods of forming graphene-containing switches. A bottom electrode may be formed over a base, and a first electrically conductive structure may be formed to extend upwardly from the bottom electrode. Dielectric material may be formed along a sidewall of the first electrically conductive structure, while leaving a portion of the bottom electrode exposed. A graphene structure may be formed to be electrically coupled with the exposed portion of the bottom electrode. A second electrically conductive structure may be formed on an opposing side of the graphene structure from the first electrically conductive structure. A top electrode may be formed over the graphene structure and electrically coupled with the second electrically conductive structure. The first and second electrically conductive structures may be configured to provide an electric field across the graphene structure.
摘要:
A film having a plurality of lighting devices thereon is transferred between a film supplying roll and a film collecting roll, and an organic light emitting layer and a second electrode are formed on the film being transferred from a deposition unit. An aging unit is provided on a rear end of the deposition unit, and applies an aging voltage to the film transferred after the organic light emitting layer is deposited by the deposition unit, thereby aging the organic light emitting layer.
摘要:
In accordance with an example embodiment of the present invention, a device comprising one or more porous graphene layers, the or each graphene porous layer comprising a multiplicity of pores. The device may form at least part of a flexible and/or stretchable, and or transparent electronic device.
摘要:
A wide gap semiconductor device has a substrate and a Schottky electrode. The substrate is made of a wide gap semiconductor material and has a first conductivity type. The Schottky electrode is arranged on the substrate to be in contact therewith and is made of a single material. The Schottky electrode includes a first region having a first barrier height and a second region having a second barrier height higher than the first barrier height. The second region includes an outer peripheral portion of the Schottky electrode. Thus, a wide gap semiconductor device capable of achieving less leakage current and a method for manufacturing the same can be provided.
摘要:
An n-type diamond epitaxial layer 20 is formed by processing a single-crystalline {100} diamond substrate 10 so as to form a {111} plane, and subsequently by causing diamond to epitaxially grow while n-doping the diamond {111} plane. Further, a combination of the n-type semiconductor diamond, p-type semiconductor diamond, and non-doped diamond, obtained in the above-described way, as well as the use of p-type single-crystalline {100} diamond substrate allow for a pn junction type, a pnp junction type, an npn junction type and a pin junction type semiconductor diamond to be obtained.
摘要:
A method of restricting diffusion of miscible materials across a barrier, including, forming a 2-dimensional material on a substrate surface, wherein the 2-dimensional material includes one or more defects through which a portion of the substrate surface is exposed, forming a plug selectively on the exposed substrate surface, and forming a cover layer on the plug and 2-dimensional material, wherein the cover layer material is miscible in the substrate material.