Abstract:
Cleaning systems and methods for semiconductor fabrication use rotatable and translatable chuck assemblies that incorporate a compact drive system to cause chuck rotation. The system uses an offset drive gear that drives a ring gear. This reduces components whose friction or lubricants might generate undue contamination. The low friction chuck functionality of the present invention is useful in any fabrication tool in which a workpiece is supported on a rotating support during a treatment. The chuck is particularly useful in cryogenic cleaning treatments.
Abstract:
Various embodiments herein relate to methods, apparatus and systems for forming a recessed feature in dielectric material on a semiconductor substrate. Separate etching and deposition operations are employed in a cyclic manner. Each etching operation partially etches the feature. Each deposition operation forms a protective coating on the sidewalls of the feature to prevent lateral etch of the dielectric material during the etching operations. The protective coating may be deposited using methods that result in formation of the protective coating along substantially the entire length of the sidewalls. The protective coating may be deposited using particular reactants having low sticking coefficients in some embodiments. The protective coating may also be deposited using particular reaction mechanisms that result in substantially complete sidewall coating. In some cases the protective coating is deposited using plasma assisted atomic layer deposition or plasma assisted chemical vapor deposition.
Abstract:
Embodiments of the invention describe a method and apparatus for multi-film deposition and etching in a batch processing system. According to one embodiment, the method includes arranging the substrates on a plurality of substrate supports in a process chamber, where the process chamber contains processing spaces defined around an axis of rotation in the process chamber, rotating the plurality of substrate supports about the axis of rotation, depositing a first film on a patterned film on each of the substrates by atomic layer deposition, and etching a portion of the first film on each of the substrates, where etching a portion of the first film includes removing at least one horizontal portion of the first film while substantially leaving vertical portions of the first film. The method further includes repeating the depositing and etching steps for a second film that contains a different material than the first film.
Abstract:
Preheat processes for a millisecond anneal system are provided. In one example implementation, a heat treatment process can include receiving a substrate on a wafer support in a processing chamber of a millisecond anneal system; heating the substrate to an intermediate temperature; and heating the substrate using a millisecond heating flash. Prior to heating the substrate to the intermediate temperature, the process can include heating the substrate to a pre-bake temperature for a soak period.
Abstract:
Electrode tips for arc lamps for use in, for instance, a millisecond anneal system are provided. In one example implementation, an electrode for an arc lamp can have an electrode tip. The surface of the electrode tip can have one or more grooves to reduce the transportation of molten material across the surface of the electrode tip. The electrode can include an interface between the electrode tip and a heat sink. The interface can have a shape designed to have a desired lateral temperature distribution across the surface of the electrode tip.
Abstract:
Systems and methods for reducing contamination on reflective mirrors disposed on chamber walls in a millisecond anneal system are provided. In one example implementation, the reflective mirrors can be heated by one or more of (1) heating the fluid in the closed fluid system for regulating the temperature of the reflective mirrors; (2) electrical cartridge heater(s) or heater ribbon(s) attached to the reflective mirrors; and/or (3) use of lamp light inside the chamber.
Abstract:
Systems and methods for substrate support in a millisecond anneal system are provided. In one example implementation, a millisecond anneal system includes a processing chamber having a wafer support plate. A plurality of support pins can extend from the wafer support plate. The support pins can be configured to support a substrate. At least one of the support pins can have a spherical surface profile to accommodate a varying angle of a substrate surface normal at the point of contact with the substrate. Other example aspects of the present disclosure are directed to methods for estimating, for instance, local contact stress at the point of contact with the support pin.
Abstract:
Preheat processes for a millisecond anneal system are provided. In one example implementation, a preheat process can include receiving a substrate on a wafer support plate in a processing chamber of a millisecond anneal system; obtaining one or more temperature measurements of the wafer support plate using a temperature sensor; and applying a preheat recipe to heat the wafer support plate based at least in part on the temperature of the wafer support plate. In one example implementation, a preheat process can include obtaining one or more temperature measurements from a temperature sensor having a field of view of a wafer support plate in a millisecond anneal system; and applying a pulsed preheat recipe to heat the wafer support plate in the millisecond anneal system based at least in part on the one or more temperature measurements.
Abstract:
Embodiments disclosed herein generally relate to methods and apparatus for processing of the bottom surface of a substrate to counteract thermal stresses thereon. Correcting strains are applied to the bottom surface of the substrate which compensate for undesirable strains and distortions on the top surface of the substrate. Specifically designed films may be formed on the back side of the substrate by any combination of deposition, implant, thermal treatment, and etching to create strains that compensate for unwanted distortions of the substrate. Localized strains may be introduced by locally altering the hydrogen content of a silicon nitride film or a carbon film. Structures may be formed by printing, lithography, or self-assembly techniques. Treatment of the layers of film is determined by the stress map desired and includes annealing, implanting, melting, or other thermal treatments.
Abstract:
Improved methods and apparatus for removing a metal nitride selectively with respect to exposed or underlying dielectric or metal layers are provided herein. In some embodiments, a method of etching a metal nitride layer atop a substrate, includes: (a) oxidizing a metal nitride layer to form a metal oxynitride layer (MN1-xOx) at a surface of the metal nitride layer, wherein M is one of titanium or tantalum and x is an integer from 0.05 to 0.95; and (b) exposing the metal oxynitride layer (MN1-xOx) to a process gas, wherein the metal oxynitride layer (MN1-xOx) reacts with the process gas to form a volatile compound which desorbs from the surface of the metal nitride layer.