Abstract:
A microfluidic diagnostic device may comprise a fluid inlet to receive a fluid from a fluidic slot, a main microfluidic channel fluidly coupled to the fluid inlet, and a main microfluidic pump interposed between the fluid inlet and the main microfluidic channel to continuously circulate a fluid through the fluidic slot, fluid inlet, and main microfluidic channel wherein the width of the fluid inlet is different from the width of the main microfluidic channel. A diagnostic device, comprising a fluidic slot, a fluid inlet fluidly coupled to the fluidic slot, a main channel fluidly coupled to the fluid inlet, and an inlet pump interposed between the fluid inlet and channel wherein the cross-sectional area of the fluid inlet is relatively larger at least one point than the cross-sectional area of the channel.
Abstract:
A microfluidic diagnostic chip may include a number of input microfluidic channels, a number output microfluidic channels, a number of interposing microfluidic channels fluidly coupled at one end to at least one input microfluidic channel and at a second end to at least one output microfluidic channel, and first and second microfluidic sensors within the number of interposing microfluidic channels wherein the microfluidic diagnostic chip is to compare output from the first microfluidic sensor sensing a fluid including an analyte to output from the second microfluidic sensor sensing the fluid lacking the analyte.
Abstract:
Microfluidic devices and methods for investigating crystallization and/or for controlling a reaction or a phase transition are disclosed. In one embodiment, the microfluidic device includes a reservoir layer; a membrane disposed on the reservoir layer; a wetting control layer disposed on the membrane; and a storage layer disposed on the wetting control layer, wherein the wetting control layer and the storage layer define a microfluidic channel comprising an upstream portion, a downstream portion, a first fluid path in communication with the upstream and the downstream portions, and a storage well positioned within the first fluid path, wherein the wetting control layer includes a fluid passageway in communication with the storage well and the membrane, and wherein the wetting control layer wets a first fluid introduced into the microfluidic channel, the first fluid comprising a hydrophilic, lipophilic, fluorophilic or gas phase as the continuous phase in the microfluidic channel.
Abstract:
A system includes a microfluidic device configured to isolate one or more particles from a mixture, a flow rate matching device configured to match flow rate of the microfluidic device with flow rate of an electrical measurement device configured to measure an electrical property of the isolated particles, and an electrical measurement device configured to measure an electrical property of the isolated particles.
Abstract:
A microdevice for isolating and amplifying aptamers includes a selection microchamber and an amplification microchamber. The selection microchamber can include a plurality of cultured cells immobilized therein. A first microchannel connecting the selection microchamber to the amplification microchamber can be configured to hydrodynamically transfer oligomers from the selection microchamber to the amplification chamber. A second microchannel connecting the selection microchamber to the amplification microchamber can be configured to hydrodynamically transfer oligomers from the amplification chamber to the selection chamber.
Abstract:
The invention provides mechanical devices that can be used to combine reagents and discover their effects on living cells. A device of the invention holds liquids in open-ended channels and transfers liquids from one channel to another by bringing a second channel into proximity and alignment with an open end of a first channel. Channels of the device can include fluid partitions (e.g., water-oil-water emulsions) that include living cells. The device includes a mechanical system the operation of which causes a receiving channel to pass among supply channels, aligning with each in turn, to pick up chemicals from those channels and make new combinations within the receiving channel. The device then presents those new chemical combinations to the living cells within their respective partitions, thereby allowing for the determination of the effects of those combinations on living cells.
Abstract:
A microdevice for isolating and amplifying aptamers includes a selection microchamber and an amplification microchamber. The selection microchamber can include a plurality of cultured cells immobilized therein. A first microchannel connecting the selection microchamber to the amplification microchamber can be configured to hydrodynamically transfer oligomers from the selection microchamber to the amplification chamber. A second microchannel connecting the selection microchamber to the amplification microchamber can be configured to hydrodynamically transfer oligomers from the amplification chamber to the selection chamber.
Abstract:
Die Erfindung betrifft eine Analyseeinheit (100) zur Durchführung einer Polymerase-Kettenreaktion, wobei die Analyseeinheit (100) ein Deckelelement (130) mit zumindest einer Deckelausnehmung (135) und ein Bodenelement (150), das zumindest eine Bodenausnehmung (152) aufweist, wobei die Bodenausnehmung (152) der Deckelausnehmung (135) gegenüberliegend angeordnet ist, um eine Reaktionskammer (110) zu bilden. Ferner umfasst die Analyseeinheit (100) eine Folie (140), die zumindest im Bereich der Deckelausnehmung (135) zwischen dem Deckelelement (130) und dem Bodenelement (150) angeordnet ist. Auch umfasst die Analyseeinheit (100) zumindest einen Kanal (160a, 160b), der zwischen dem Deckelelement (130) und dem Bodenelement (150) ausgebildet ist, um ein Fluid in die Bodenausnehmung (152) der Reaktionskammer (110) einzuleiten und/oder auszuleiten. Schließlich umfast die Analyseeinheit (100) einen in der Bodenausnehmung (152) angeordneten Sondenträger (155), der als Sonde (157) zumindest ein Indikatormaterial zur Identifizierung eines biochemischen Materials aufweist, wobei das Indikatormaterial auf dem Sondenträger (155) einen festen Aggregatszustand aufweist.
Abstract:
The invention relates to a microfluidic system for processing biological samples comprising a holding chamber adapted for holding a fluid and to be rotated on a platform, said holding chamber comprising an outlet through which fluid flow is controlled by an acceleration-primed valve system, wherein the acceleration- primed valve system comprises a capillary valve and an outlet channel. The invention provides a novel valving system, which retains fluids at low angular velocities, removes the need for hydrophilic surfaces, minimises disc real-estate and optimises certain microfluidic processes done in the holding chamber.
Abstract:
Provided here are cell detection systems, fluidic devices, structures and techniques related to particle and cell sorting and detection in fluid, for example sorting specific subpopulations of cell types. A method for verification of sorting of particles includes receiving a first detection signal that is associated with optical characteristics of a particle in a first channel. A sorting channel of a plurality of second channels is determined based on the first detection signal, thereby determining the sorting of the particle into the sorting channel based on the optical characteristics of the particle. A sorting signal for sorting the particle from the first channel into the sorting channel is transmitted. A second detection signal is received that is associated with the presence of the particle in the sorting channel. The sorting of the particle from the first channel into the sorting channel is verified based on the second detection signal.