Abstract:
Ternary metal nitride layers suitable for thin-film resistors are fabricated by forming constituent layers of complementary components (e.g., binary nitrides of the different metals, or a binary nitride of one metal and a metallic form of the other metal), then annealing the constituent layers to interdiffuse the materials, thus forming the ternary metal nitride. The constituent layers (e.g., 2-5nm thick) may be sputtered from binary metal nitride targets, from metal targets in a nitrogen-containing ambient, or from metal targets in an inert ambient. Optionally, a nitrogen-containing ambient may also be used for the annealing. The annealing may be 10 seconds to 10 minutes at 500-1000°C and may also process another component on the same substrate (e.g., activate a diode).
Abstract:
A dielectric layer can achieve a crystallography orientation similar to a base dielectric layer with a conductive layer disposed between the two dielectric layers. By providing a conductive layer having similar crystal structure and lattice parameters with the base dielectric layer, the crystallography orientation can be carried from the base dielectric layer, across the conductive layer to affect the dielectric layer. The process can be used to form capacitor structure for anisotropic dielectric materials, along the direction of high dielectric constant.
Abstract:
Provided is High Productivity Combinatorial (HPC) testing methodology of semiconductor substrates, each including multiple site isolated regions. The site isolated regions are used for testing different compositions and/or structures of barrier layers disposed over silver reflectors. The tested barrier layers may include all or at least two of nickel, chromium, titanium, and aluminum. In some embodiments, the barrier layers include oxygen. This combination allows using relative thin barrier layers (e.g., 5-30 Angstroms thick) that have high transparency yet provide sufficient protection to the silver reflector. The amount of nickel in a barrier layer may be 5-10% by weight, chromium - 25-30%, titanium and aluminum - 30%-35% each. The barrier layer may be co-sputtered in a reactive or inert environment using one or more targets that include all four metals. An article may include multiple silver reflectors, each having its own barrier layer.
Abstract:
Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A stack including a defect source layer, a defect blocking layer, and a defect acceptor layer disposed between the defect source layer and the defect blocking layer may be subjected to annealing. During the annealing, defects are transferred in a controllable manner from the defect source layer to the defect acceptor layer. At the same time, the defects are not transferred into the defect blocking layer thereby creating a lowest concentration zone within the defect acceptor layer. This zone is responsible for resistive switching. The precise control over the size of the zone and the defect concentration within the zone allows substantially improvement of resistive switching characteristics of the ReRAM cell. In some embodiments, the defect source layer includes aluminum oxynitride, the defect blocking layer includes titanium nitride, and the defect acceptor layer includes aluminum oxide.
Abstract:
Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A ReRAM cell includes an embedded resistor and resistive switching layer connected in series. The embedded resistor prevents excessive electrical currents through the resistive switching layer, especially when the resistive switching layer is switched into its low resistive state, thereby preventing over-programming. The embedded resistor includes aluminum, nitrogen, and one or more additional metals (other than aluminum). The concentration of each component is controlled to achieve desired resistivity and stability of the embedded resistor. In some embodiments, the resistivity ranges from 0.1 Ohm-centimeter to 40 Ohm- centimeter and remains substantially constant while applying an electrical field of up 8 mega-Volts /centimeter to the embedded resistor. The embedded resistor may be made from an amorphous material, and the material is operable to remain amorphous even when subjected to typical annealing conditions.
Abstract:
Provided are methods of High Productivity Combinatorial testing of semiconductor substrates, each including multiple site isolated regions. Each site isolated region includes a titanium nitride structure as well as a hafnium oxide structure and/or a polysilicon structure. Each site isolated region is exposed to an etching solution that includes sulfuric acid, hydrogen peroxide, and hydrogen fluoride. The composition of the etching solution and/or etching conditions are varied among the site isolated regions to study effects of this variation on the etching selectivity of titanium nitride relative to hafnium oxide and/or polysilicon and on the etching rates. The concentration of sulfuric acid and/or hydrogen peroxide in the etching solution may be less than 7 % by volume each, while the concentration of hydrogen fluoride may be between 50 ppm and 200 ppm. In some embodiments, the temperature of the etching solution is maintained at between about 40C and 60C.
Abstract:
Embodiments provided herein describe methods and systems for processing substrates. A plasma including radical species and charged species is generated. The charged species of the plasma are collected. A substrate is exposed to the radical species of the plasma. A layer is formed on the substrate after exposing the substrate to the radical species.
Abstract:
Provided are nonvolatile memory assemblies each including a resistive switching layer and current steering element. The steering element may be a transistor connected in series with the switching layer. Resistance control provided by the steering element allows using switching layers requiring low switching voltages and currents. Memory assemblies including such switching layers are easier to embed into integrated circuit chips having other low voltage components, such as logic and digital signal processing components, than, for example, flash memory requiring much higher switching voltages. In some embodiments, provided nonvolatile memory assemblies operate at switching voltages less than about 3.0V and corresponding currents less than 50 microamperes. A memory element may include a metal rich hafnium oxide disposed between a titanium nitride electrode and doped polysilicon electrode. One electrode may be connected to a drain or source of the transistor, while another electrode is connected to a signal line.
Abstract:
In some embodiments, the present invention discloses a two-step deposition process for forming hafnium oxide gate dielectric, comprising an interface layer deposition followed by a bulk layer deposition. In the interface layer deposition process, water is used as an oxidizer precursor together with a hafnium-containing precursor. In the bulk layer deposition process, oxygen or ozone is used as an oxidizer precursor together with a hafnium-containing precursor.
Abstract:
Embodiments generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has an improved device switching capacity by using multiple layers of variable resistance layers. In one embodiment, the resistive switching element comprises at least three layers of variable resistance materials to increase the number of logic states. Each variable resistance layer may have an associated high resistance state and an associated low resistance state. As the resistance of each variable resistance layer determines the digital data bit that is stored, the multiple variable resistance layers per memory element allows for additional data storage without the need to further increase the density of nonvolatile memory devices. Typically, resistive switching memory elements may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices, such as digital cameras, mobile telephones, handheld computers, and music players.