Abstract:
Disclosed are systems and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, a sorbent cartridge with at least two separate flow paths, and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment. The system for performing kidney replacement therapy has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. The dialysis circuit and an extracorporeal circuit for circulating blood are in fluid communication through the dialysis membrane. The flux of fluid moving between the extracorporeal circuit and the dialysis circuit is modified by the rate at which the control pump is operating such that a rate of ultrafiltration and convective clearance can be controlled. The system provides for the monitoring of an inlet and outlet conductivity of the sorbent cartridge to provide a facility to quantify or monitor the removal of urea by the sorbent cartridge.
Abstract:
Sorbent cartridges having a polystyrene sulfonate resin saturated with calcium ions for the performance of kidney replacement therapy are disclosed. Systems and methods having or using a sorbent cartridge, a dialyzer, control components, a cartridge having a polystyrene sulfonate resin, and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. A system for performing kidney replacement therapy has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. The system provides for the monitoring of an inlet and outlet conductivity of the sorbent cartridge to quantify or monitor the removal of urea by the sorbent cartridge.
Abstract:
A kidney failure treatment system includes: (i) a dialysate supply; (ii) a weighing device; a control container coupled operably to the weighing device; (iii) a diffusion membrane; (iv) a drain; first and second pumps; (v) a first fluid conduit coupled fluidly to the dialysate supply and the diffusion membrane, the first fluid conduit coupled operably to the first pump; (vi) a second fluid conduit coupled fluidly to the control container and the drain, the second fluid conduit coupled operably to the first pump; and (vii) a third fluid conduit coupled fluidly to the diffusion membrane and the control conduit, the third fluid conduit coupled operably to the second pump.
Abstract:
Apparatuses, systems, and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge, and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. A first sorbent cartridge is provided for use in a portable treatment module having activated carbon and zirconium oxide. The system also provides for the monitoring of an inlet and outlet conductivity of a sorbent cartridge containing urease to provide a facility to quantify or monitor the removal of urea by a detachable urea removal module.
Abstract:
An access disconnection system includes: an arterial line (14); a venous line (18); a transmitter (62) configured to transmit a sound wave in one of the arterial (14) and venous lines (18) when connected to a patient (12); a receiver (64) configured to receive the sound wave from the other of the arterial (14) and venous lines (18) when connected to the patient (12); and electronic circuitry (66) coupled to at least one of the transmitter and receiver, the circuitry (66) configured to send a disconnection output indicative of a change in the sound waves received by the receiver (64) from the transmitter (62) sufficient to expect that an access disconnection of one of the arterial line (14) and venous lines (18) has occurred.
Abstract:
Systems and methods for improving medical fluid delivery systems, such as hemofiltration ("HF") and hemodiafiltration ("HDF") are provided. In first embodiments, systems and methods for selectively performing pre-and postdilution HF and HDF clearance modes is provided. In other embodiments, systems and methods for providing prime bolus and rinseback fluid volumes before, during and/or after HF and HDF therapies are provided. In further embodiments, improved systems and methods for removing ultrafiltrate from the patient are provided. Still further, improved filtration configurations and methods are provided.
Abstract:
A system, method and apparatus for performing a renal replacement therapy is provided. In one embodiment, two small high flux dialyzers are connected in series. A restriction is placed between the two dialyzers in the dialysate flow path. The restriction is variable and adjustable in one preferred embodiment. The restriction builds a positive pressure in the venous dialyzer, causing a high degree of intentional backfiltration. That backfiltration causes a significant flow of dialysate through the high flux venous membrane directly into the patient's blood. That backfiltered solution is subsequently ultrafiltered from the patient from the arterial dialyzer. The diffusion of dialysate into the venous filter and removal of dialysate from the arterial dialyzer causes a convective transport of toxins from the patient. Additionally, the dialysate that does not diffuse directly into the patient but instead flows across the membranes of both dialyzers provides a diffusive clearance of waste products.
Abstract:
Systems and methods for the performance of kidney replacement therapy having or using a dialyzer, control components, sorbent cartridge and fluid reservoirs configured to be of a weight and size suitable to be worn or carried by an individual requiring treatment are disclosed. The system for performing kidney replacement therapy has a controlled compliance dialysis circuit, where a control pump controls the bi-directional movement of fluid across a dialysis membrane. The dialysis circuit and an extracorporeal circuit for circulating blood are in fluid communication through the dialysis membrane. The flux of fluid moving between the extracorporeal circuit and the dialysis circuit is modified by the rate at which the control pump is operating such that a rate of ultrafiltration and convective clearance can be controlled. The system provides for the monitoring of an inlet and outlet conductivity of the sorbent cartridge to provide a facility to quantify or monitor the removal of urea by the sorbent cartridge.
Abstract:
A dialysis machine includes a dialysis instrument having a pump actuator and first and second valve actuators, and a disposable cassette operable with the dialysis instrument, the disposable cassette including a pump portion operable with the pump actuator, first and second valve chambers operable with the first and second valve actuators, the first and second valve chambers communicating fluidly with each other, at least the first valve chamber communicating fluidly with a compliance chamber, the compliance chamber negating a first backpressure due to a pneumatic closing pressure used to close the first valve chamber to help to ensure the pneumatic pressure applied to the first valve chamber will close the first valve chamber against a second backpressure from an existing closure of the second valve chamber.