Abstract:
Process for fabrication of MOS semiconductor structures and transistors such as CMOS structures and transistors with thin gate oxide, polysilicon surface contacts having thickness on the order of 500 Angstroms or less and with photo-lithographically determined distances between the gate surface contact and the source and drain contacts. Semiconductor devices having polysilicon surface contacts wherein the ratio of the vertical height to the horizontal dimension is approximately unity. Small geometry Metal-Oxide-Semiconductor (MOS) transistor with thin polycrystalline surface contacts and method and process for making the MOS transistor. MOS and CMOS transistors and process for making. Process for making transistors using Silicon Nitride layer to achieve strained Silicon substrate. Strained Silicon devices and transistors wherein fabrication starts with strained Silicon substrate. Strained Silicon devices which use a Silicon Nitride film applied to the substrate at high temperature and which use differential thermal contraction rates during cooling to achieve strained Silicon.
Abstract:
An integrated Junction Field Effect Transistor is disclosed which is much smaller and much less expensive to fabricate because it does not use Shallow Trench Isolation or field oxide in the semiconductor substrate to isolate separate transistors. Instead, a layer of insulating material is formed on the top surface of said substrate, and interconnect trenches are etched in said insulating layer which do not go all the way down to the semiconductor substrate. Contact openings are etched in the insulating layer all the way down to the semiconductor layer. Doped poly-silicon is formed in the contact openings and interconnect trenches and silicide is formed on tops of the poly-silicon. This contact and interconnect structure applies to any integrated transistor. The integrated JFET disclosed herein does not use STI or field oxide and uses junction isolation. A conventional JFET is built in a P- well. The P- well is encapsulated in an N-well which is implanted into the substrate. Separate contacts to the P-well, N-well and substrate are formed as well as to the source, drain and gate so that the device can be isolated by reverse-biasing a PN junction. Operating voltage is restricted to less than 0.7 volts to prevent latching.
Abstract:
A junction field effect transistor comprises a semiconductor substrate and a well region formed in the substrate. A source region of a first conductivity type is formed in the well region. A drain region of the first conductivity type is formed in the well region and spaced apart from the source region. A channel region of the first conductivity type is located between the source region and the drain region and formed in the well region. A gate region of a second conductivity type is formed in the well region. The transistor further includes first, second, and third connection regions. The first connection region is in ohmic contact with the source region and formed of suicide. The second connection region is in ohmic contact with the drain region and formed of suicide. The third connection region in ohmic contact with the gate region.
Abstract:
Integrated active area isolation structure for transistor to replace larger and more expensive Shallow Trench Isolation or field oxide to isolate transistors. Multiple well implant is formed with PN junctions between wells and with surface contacts to substrate and wells so bias voltages applied to reverse bias PN junctions to isolate active areas. Insulating layer is formed on top surface of substrate and interconnect channels are etched in insulating layer which do not go down to the semiconductor substrate. Contact openings for surface contacts to wells and substrate are etched in insulating layer down to semiconductor layer. Doped silicon or metal is formed in contact openings for surface contacts and to form interconnects in channels. Silicide may be formed on top of polycrystalline silicon contacts and interconnect lines to lower resistivity. Any JFET or MOS transistor may be integrated into the resulting junction isolated active area.
Abstract:
Process for fabrication of MOS semiconductor structures and transistors such as CMOS structures and transistors with thin gate oxide, polysilicon surface contacts having thickness on the order of 500 Angstroms or less and with photo-lithographically determined distances between the gate surface contact and the source and drain contacts. Semiconductor devices having polysilicon surface contacts wherein the ratio of the vertical height to the horizontal dimension is approximately unity. Small geometry Metal-Oxide-Semiconductor (MOS) transistor with thin polycrystalline surface contacts and method and process for making the MOS transistor. MOS and CMOS transistors and process for making. Process for making transistors using Silicon Nitride layer to achieve strained Silicon substrate. Strained Silicon devices and transistors wherein fabrication starts with strained Silicon substrate. Strained Silicon devices which use a Silicon Nitride film applied to the substrate at high temperature and which use differential thermal contraction rates during cooling to achieve strained Silicon.
Abstract:
Self-alignment structures, such as micro-balls (608) and V-grooves (606), may be formed on chips (605, 607) made by different processes. The self-alignment structures may be aligned to mask layers within an accuracy of one-half the smallest feature size inside a chip. For example, the alignment structures can align an array of pads (803, 807) having a pitch of 0.6 microns, compared to a pitch of 100 microns available with today's Ball Grid Array (BGA) technology. As a result, circuits in the mated chips (605, 607) can communicate via the pads (803, 807) with the same speed or clock frequency as if in a single chip. For example, clock rates between interconnected chips (605, 607) can be increased from 100 MHz to 4 GHz due to low capacitance of the interconnected pads (803, 807). Because high-density arrays of pads (803, 807) can interconnect chips, chips (605, 607) can be made smaller, thereby reducing cost of chips (605, 607) by order(s) of magnitude.
Abstract:
Integrated active area isolation structure for transistor to replace larger and more expensive Shallow Trench Isolation or field oxide to isolate transistors. Multiple well implant is formed with PN junctions between wells and with surface contacts to substrate and wells so bias voltages applied to reverse bias PN junctions to isolate active areas. Insulating layer is formed on top surface of substrate and interconnect channels are etched in insulating layer which do not go down to the semiconductor substrate. Contact openings for surface contacts to wells and substrate are etched in insulating layer down to semiconductor layer. Doped silicon or metal is formed in contact openings for surface contacts and to form interconnects in channels. Silicide may be formed on top of polycrystalline silicon contacts and interconnect lines to lower resistivity. Any JFET or MOS transistor may be integrated into the resulting junction isolated active area.
Abstract:
A method for modeling a circuit includes receiving a netlist that defines a plurality of connections between a plurality of circuit elements and identifying a subset of the connections. The method also includes routing the identified connections with a first group of wires having a first wire width and routing at least a portion of the remaining connections with a second wire width. The second wire width is smaller than the first wire width. The method further includes replacing the first group of wires with a third group of wires having the second wire width.
Abstract:
A method of forming a semiconductor device can include forming a first layer of semiconductor material in contact with a first area of a substrate. The first area can be adjacent to at least one electrical isolation structure that extends into the substrate and has a top portion extending above a surface of the substrate. The method can also include etching, with a degree of anisotropy, the first layer to form at least a first structure in contact with the first area. Further, in a step separate from the etching step, retention of residual semiconductor material at a junction of the substrate and the at least one electrical isolation structure can be prevented.
Abstract:
The present invention relates generally to semiconductor circuits, and more particularly to semiconductor circuits having interconnected field effect transistors, methods of designing such circuits, and data structures representing such circuits.