MAGNETIC TUNNELING JUNCTION DEVICES WITH SIDEWALL GETTER

    公开(公告)号:WO2019005082A1

    公开(公告)日:2019-01-03

    申请号:PCT/US2017/040136

    申请日:2017-06-29

    CPC classification number: H01L43/08 H01L43/02 H01L43/12

    Abstract: MTJ material stacks including one or more material layers that have outdiffused one or more dopants through a layer sidewall edge, MTJ devices employing such stacks, and computing platforms employing such MTJ devices. A free magnet layer or fixed magnet layer may include a dopant, such as boron. A liner layer may be deposited over an MTJ stack, for example in close proximity to the edge of at least one of the fixed or free magnet layers. During a thermal anneal, a dopant, such as boron, may be gettered by the liner. Dopant gettering by the liner may facilitate changes with in the MTJ stack, such as development of perpendicular magnetic anisotropy within a magnet layer. Following dopant gettering, the liner may be retained, or at least partially removed as sacrificial.

    FRONT-END TUNNEL JUNCTION DEVICE PLUS BACK-END TRANSISTOR DEVICE
    8.
    发明申请
    FRONT-END TUNNEL JUNCTION DEVICE PLUS BACK-END TRANSISTOR DEVICE 审中-公开
    前端隧道结器件加后端晶体管器件

    公开(公告)号:WO2018004652A1

    公开(公告)日:2018-01-04

    申请号:PCT/US2016/040686

    申请日:2016-07-01

    Abstract: Techniques are disclosed for forming an integrated circuit (IC) including a front-end tunnel junction device plus a back-end transistor or transistor-based device. For ease of reference, the combination of the two devices may be referred to herein as a "1T-1TJ" configuration, where the "1T" portion represents the back-end transistor or transistor-based device and the "1TJ" portion represents the front-end tunnel junction device. As will be apparent in light of this disclosure, in some embodiments, 1T-1TJ configuration can be used for memory applications, where the front-end tunnel junction device can be used as the switching element to store data (e.g., a '1' or '0') and the back-end transistor or transistor-based device can be used to write and/or read the tunnel junction switching element. Benefits can be derived from forming the tunnel junction device during front-end IC processing. Other embodiments may be described and/or disclosed.

    Abstract translation: 公开了用于形成包括前端隧道结器件加上后端晶体管或基于晶体管的器件的集成电路(IC)的技术。 为了便于参考,这两个装置的组合可以在本文中被称为“1T-1TJ” 配置,其中“1T” 部分表示后端晶体管或基于晶体管的器件,而“1TJ” 部分代表前端隧道连接装置。 根据本公开内容将显而易见的是,在一些实施例中,1T-1TJ配置可以用于存储器应用,其中前端隧道结器件可以用作开关元件以存储数据(例如'1' 或'0'),并且后端晶体管或基于晶体管的器件可以用于写入和/或读取隧道结切换元件。 在前端IC处理期间形成隧道结器件可以带来好处。 其他实施例可以被描述和/或公开。

    FERROMAGNETIC RESONANCE TESTING OF BURIED MAGNETIC LAYERS OF WHOLE WAFER
    9.
    发明申请
    FERROMAGNETIC RESONANCE TESTING OF BURIED MAGNETIC LAYERS OF WHOLE WAFER 审中-公开
    全晶体埋藏磁性层的铁磁共振测试

    公开(公告)号:WO2017171848A1

    公开(公告)日:2017-10-05

    申请号:PCT/US2016/025624

    申请日:2016-04-01

    Abstract: Techniques are disclosed for carrying out ferromagnetic resonance (FMR) testing on whole wafers populated with one or more buried magnetic layers. The techniques can be used to verify or troubleshoot processes for forming the buried magnetic layers, without requiring the wafer to be broken. The techniques can also be used to distinguish one magnetic layer from others in the same stack, based on a unique frequency response of that layer. One example methodology includes moving a wafer proximate to a waveguide (within 500 microns, but without shorting), energizing a DC magnetic field near the target measurement point, applying an RF input signal through the waveguide, collecting resonance spectra of the frequency response of the waveguide, and decomposing the resonance spectra into magnetic properties of the target layer. One or both of the DC magnetic field and RF input signal can be swept to generate a robust set of resonance spectra.

    Abstract translation: 公开了用于在填充有一个或多个掩埋磁性层的整个晶片上执行铁磁共振(FMR)测试的技术。 这些技术可用于验证或排除形成掩埋磁性层的过程,而不需要破碎晶片。 基于该层的唯一频率响应,该技术还可用于将同一叠层中的一个磁层与其他磁层区分开来。 一个示例性方法包括移动靠近波导(在500微米内,但没有短路)的晶片,激励目标测量点附近的DC磁场,通过波导施加RF输入信号,收集波导的频率响应的谐振频谱 波导,并将谐振频谱分解成目标层的磁性。 直流磁场和射频输入信号中的一个或两个可以被扫描以产生一组强大的共振谱。

    LAYER TRANSFERRED FERROELECTRIC MEMORY DEVICES
    10.
    发明申请
    LAYER TRANSFERRED FERROELECTRIC MEMORY DEVICES 审中-公开
    层转移铁电存储器件

    公开(公告)号:WO2017171837A1

    公开(公告)日:2017-10-05

    申请号:PCT/US2016/025576

    申请日:2016-04-01

    Abstract: A monocrystalline metal-oxide stack including a ferroelectric (FE) tunneling layer and a buffer layer is epitaxially grown on a growth substrate. A first poly crystalline metal electrode layer is deposited over the tunneling layer. A bonding material layer is further deposited over the electrode layer. The bonding material layer is then bonded to a material layer on a front or back side of a host substrate that further comprises a transistor cell. Once bonded, the growth substrate may be removed from the metal-oxide stack to complete a transfer of the metal-oxide stack from the growth substrate to the host substrate. A second poly crystalline metal electrode layer is then deposited over the exposed buffer layer, placing both electrodes in close proximity to the FE tunneling layer.

    Abstract translation: 包括铁电(FE)隧穿层和缓冲层的单晶金属氧化物堆叠体在生长衬底上外延生长。 在隧穿层上沉积第一多晶金属电极层。 进一步在电极层上沉积结合材料层。 然后将接合材料层接合到还包括晶体管单元的主基板的正面或背面上的材料层。 一旦结合,可将生长衬底从金属氧化物堆叠移除以完成金属氧化物堆叠从生长衬底到主衬底的转移。 然后在暴露的缓冲层上沉积第二多晶金属电极层,使两个电极紧靠FE隧穿层。

Patent Agency Ranking