Abstract:
A method is presented for post chemical mechanical polishing (PCMP) clean for cleaning a chemically- mechanically polished semiconductor wafer. The method includes planarizing the semiconductor wafer, subjecting the semiconductor wafer to a de-oxygenated mixture of Dl water and PCMP solution, and applying a de-oxygenated environment during the cleaning. The solution can be de-oxygenated by nitrogen degas or by introducing a reducing agent. The environment can be de-oxygenated by purging with an inert gas, such as nitrogen.
Abstract:
A system and method for performing a wet etching process is disclosed. The system includes multiple processing stations accessible by a transfer device, including a measuring station to optically measure the thickness of a wafer before and after each etching steps in the process. The system also includes a controller to analyze the thickness measurements in view of a target wafer profile and generate an etch recipe, dynamically and in real time, for each etching step. In addition, the process controller can cause a single wafer wet etching station to etch the wafer according to the generated etching recipes. In addition, the system can, based on the pre and post-etch thickness measurements and target etch profile, generate and/or refine the etch recipes.
Abstract:
An apparatus and method for cleaning semiconductor wafer are provided. The apparatus includes a brush module, a swing arm, a rotating actuator and an elevating actuator. The brush module has a brush head for providing mechanical force on a surface of a wafer. An end of the swing arm mounts the brush module. The rotating actuator is connected with the other end of the swing arm. The rotating actuator drives the swing arm to swing across the whole surface of the wafer, which brings the brush head moving across the whole surface of the wafer. The elevating actuator is connected with the other end of the swing arm. The elevating actuator drives the swing arm to rise or descend, which brings the brush module rising or descending. The apparatus cleans the semiconductor wafer by means of the brush head, which improves the cleaning effect.
Abstract:
In some embodiments, an apparatus for cleaning a substrate is provided that includes (1) a substrate chuck configured to support a substrate with a front side of the substrate accessible; (2) a buff pad assembly configured to support a buff pad having a diameter smaller than a diameter of the substrate; and (3) a swing arm coupled to the buff pad and configured to position and rotate the buff pad along the front side of the substrate, and control an amount of force applied by the buff pad against the front side of the substrate during cleaning. The substrate chuck, buff pad assembly and swing arm are configured to buff clean the substrate. Numerous additional aspects are disclosed.
Abstract:
A method and apparatus for cleaning a substrate after chemical mechanical planarizing (CMP) is provided. The apparatus comprises a housing, a substrate holder rotatable on a first axis and configured to retain a substrate in a substantially vertical orientation, a first pad holder having a pad retaining surface facing the substrate holder in a parallel and spaced apart relation, the first pad holder rotatable on a second axis disposed parallel to the first axis, a first actuator operable to move the pad holder relative to the substrate holder to change a distance between the first axis and the second axis, and a second pad holder disposed in the housing, the second pad holder having a pad retaining surface facing the substrate holder in a parallel and spaced apart relation, the second pad holder rotatable on a third axis parallel to the first axis and the second axis.
Abstract:
A cleaning device for cleaning substrates is provided. The cleaning device includes a generally cylindrically-shaped brush mandrel and a cylindrical brush. The brush mandrel has a body section with an outer surface positioned about a central axis. The outer surface is interrupted by an engagement member having primary features adjacent secondary features. The brush has a hollow bore formed around the brush mandrel with an inner surface interrupted by a second engagement member which mates the first engagement member. The primary features flow in a direction generally perpendicular to a rotational direction of the brush mandrel around the central axis and include a first surface which is generally perpendicular to the outer surface. The secondary features include a second surface which flows in a direction generally perpendicular to the first surface and along the central axis. No primary feature includes a radially obstructing feature formed over any secondary feature.