-
公开(公告)号:WO2021257318A1
公开(公告)日:2021-12-23
申请号:PCT/US2021/036286
申请日:2021-06-08
Applicant: APPLIED MATERIALS, INC.
Inventor: GUNAJI, Akshay , KULKARNI, Mayur Govind
IPC: C23C16/44 , C23C16/505 , C23C16/26 , H01L21/02 , C23C16/4412 , C23C16/458 , H01J2237/3321 , H01J2237/3323 , H01J37/32834 , H01J37/32899 , H01L21/02115 , H01L21/02274 , H01L21/0332 , H01L21/67017 , H01L21/6719
Abstract: Exemplary semiconductor processing chambers may include a chamber body including sidewalls and a base. The chambers may include a substrate support extending through the base of the chamber body. The substrate support may include a support platen configured to support a semiconductor substrate. The substrate support may include a shaft coupled with the support platen. The chambers may include a foreline conduit offset from a center of the base for exhausting a gas from the chamber body, and an exhaust volume coupled to the foreline conduit. The chambers may include a pumping plate comprising a central aperture through which the shaft extends, and further comprising exit apertures for directing at least a portion of the gas from the chamber body to the exhaust volume. The exit apertures may be disposed at locations opposite the foreline conduit so as to reduce nonuniformity in gas flow.
-
2.
公开(公告)号:WO2021252019A1
公开(公告)日:2021-12-16
申请号:PCT/US2020/067259
申请日:2020-12-29
Applicant: SANDISK TECHNOLOGIES LLC
Inventor: SHIMABUKURO, Seiji , TSUTSUE, Makoto
IPC: H01L21/02 , H01L21/285 , H01L21/302 , H01L21/67 , C23C16/00 , H01L21/02164 , H01L21/0217 , H01L21/02274 , H01L21/02348 , H01L21/67115 , H01L27/11
Abstract: A patterned backside stress compensation film having different stress in different sectors is formed on a backside of a substrate to reduce combination warpage of the substrate. The film can be formed by employing a radio frequency electrode assembly including plurality of conductive plates that are biased with different RF power and cause local variations in the plasma employed to deposit the backside film. Alternatively, the film may be deposited with uniform stress, and some of its sectors are irradiated with ultraviolet radiation to change the stress of these irradiated sectors. Yet alternatively, multiple backside deposition processes may be sequentially employed to deposit different backside films to provide a composite backside film having different stresses in different sectors.
-
3.
公开(公告)号:WO2021150391A1
公开(公告)日:2021-07-29
申请号:PCT/US2021/012943
申请日:2021-01-11
Applicant: MICRON TECHNOLOGY, INC.
Inventor: SARKAR, Santanu , GOOD, Farrell M.
IPC: H01L45/00 , H01L27/24 , C23C16/045 , C23C16/452 , H01L21/02167 , H01L21/02274 , H01L21/02381 , H01L2221/1047
Abstract: An electronic device comprising a stack structure comprising one or more stacks of materials and one or more silicon carbide materials adjacent to the one or more stacks of materials. The materials of the one or more stacks comprise a single chalcogenide material and one or more of a conductive carbon material, a conductive material, and a hardmask material. The one or more silicon carbide materials comprises silicon carbide, silicon carboxide, silicon carbonitride, silicon carboxynitride, and also comprise silicon-carbon covalent bonds. The one or more silicon carbide materials is configured as a liner or as a seal. Additional electronic devices are disclosed, as are related systems and methods of forming an electronic device.
-
公开(公告)号:WO2023278296A1
公开(公告)日:2023-01-05
申请号:PCT/US2022/035078
申请日:2022-06-27
Applicant: APPLIED MATERIALS, INC.
Inventor: SHEN, Qixin , YANG, Chuanxi , YU, Hang , PADHI, Deenesh , LEE, Gill Yong , KANG, Sung-Kwan , MOHAMMED, Abdul Wahab , LIU, Hailing
IPC: H01L27/108 , H01L21/02 , H01L21/0217 , H01L21/02211 , H01L21/02274 , H01L21/02304 , H01L21/02315 , H01L21/0332 , H01L21/0335 , H01L21/0337 , H01L21/32138 , H01L21/32139 , H01L21/3215 , H01L27/10805
Abstract: Memory devices and methods of forming memory devices are described. The memory devices comprise a silicon nitride hard mask layer on a ruthenium layer. Forming the silicon nitride hard mask layer on the ruthenium comprises pre-treating the ruthenium layer with a plasma to form an interface layer on the ruthenium layer; and forming a silicon nitride layer on the interface layer by plasma-enhanced chemical vapor deposition (PECVD). Pre-treating the ruthenium layer, in some embodiments, results in the interface layer having a reduced roughness and the memory device having a reduced resistivity compared to a memory device that does not include the interface layer.
-
公开(公告)号:WO2022031485A1
公开(公告)日:2022-02-10
申请号:PCT/US2021/043376
申请日:2021-07-28
Applicant: APPLIED MATERIALS, INC.
Inventor: WANG, Huiyuan , KUSTRA, Rick , QI, Bo , MALLICK, Abhijit Basu , ALAYAVALLI, Kaushik , PINSON, Jay D.
IPC: H01L21/02 , H01L21/033 , C23C16/30 , C23C16/448 , C23C16/505 , C23C16/32 , C23C16/342 , C23C16/345 , C23C16/36 , C23C16/401 , C23C16/50 , H01L21/02112 , H01L21/02129 , H01L21/0217 , H01L21/02205 , H01L21/02208 , H01L21/02274 , H01L21/02532 , H01L21/02579 , H01L21/0262
Abstract: Examples of the present technology include semiconductor processing methods to form boron-containing materials on substrates. Exemplary processing methods may include delivering a deposition precursor that includes a boron-containing precursor to a processing region of a semiconductor processing chamber. A plasma may be formed from the deposition precursor within the processing region of the semiconductor processing chamber. The methods may further include depositing a boron-containing material on a substrate disposed within the processing region of the semiconductor processing chamber, where the substrate is characterized by a temperature of less than or about 50 °C. The as-deposited boron-containing material may be characterized by a surface roughness of less than or about 2 nm, and a stress level of less-than or about -500 MPa. In some embodiments, a layer of the boron-containing material may function as a hardmask.
-
公开(公告)号:WO2022031467A1
公开(公告)日:2022-02-10
申请号:PCT/US2021/043110
申请日:2021-07-26
Applicant: APPLIED MATERIALS, INC.
Inventor: PAUL, Khokan Chandra
IPC: H01L21/02 , C23C16/24 , C23C16/505 , C23C16/56 , H01J37/32 , C23C16/45536 , H01J37/32266 , H01L21/02274
Abstract: Examples of the present technology include semiconductor processing methods that may include generating a plasma from a deposition precursor in a processing region of a semiconductor processing chamber. The plasma may be generated at a delivered power within a first period of time when plasma power is delivered from a power source operating at a first duty cycle. The methods may further include transitioning the power source from the first duty cycle to a second duty cycle after the first period of time. A layer may be deposited on a substrate in the processing region of the semiconductor processing chamber from the generated plasma. The layer, as deposited, may be characterized by a thickness of 50 Å or less. Exemplary deposition precursors may include one or more silicon-containing precursors, and an exemplary layer deposited on the substrate may include an amorphous silicon layer.
-
7.
公开(公告)号:WO2022005703A1
公开(公告)日:2022-01-06
申请号:PCT/US2021/036188
申请日:2021-06-07
Applicant: APPLIED MATERIALS, INC.
Inventor: HSU, Jui-Yuan , MANNA, Pramit , JANAKIRAMAN, Karthik
IPC: H01L21/02 , H01L21/033 , H01L21/311 , H01L21/3213 , C23C16/26 , C23C16/505 , C23C16/52 , C23C16/56 , H01L21/02115 , H01L21/02274 , H01L21/0332 , H01L21/31144 , H01L29/66227
Abstract: Embodiments of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the embodiments described herein provide techniques for depositing nitrogen-doped diamond-like carbon films for patterning applications. In one or more embodiments, a method for processing a substrate includes flowing a deposition gas containing a hydrocarbon compound and a nitrogen dopant compound into a processing volume of a process chamber having a substrate positioned on an electrostatic chuck, and generating a plasma at or above the substrate by applying a first RF bias to the electrostatic chuck to deposit a nitrogen- doped diamond-like carbon film on the substrate. The nitrogen-doped diamond-like carbon film has a density of greater than 1.5 g/cc and a compressive stress of about -20 MPa to less than -600 MPa.
-
8.
公开(公告)号:WO2022005700A1
公开(公告)日:2022-01-06
申请号:PCT/US2021/036114
申请日:2021-06-07
Applicant: APPLIED MATERIALS, INC.
Inventor: VENKATASUBRAMANIAN, Eswaranand , MANNA, Pramit , MALLICK, Abhijit Basu
IPC: H01L21/02 , H01L21/033 , H01L21/311 , H01L21/3213 , C23C16/26 , C23C16/505 , C23C16/52 , C23C16/56 , H01L21/02115 , H01L21/02274 , H01L21/0332 , H01L21/31144 , H01L29/66227
Abstract: Embodiments of the present disclosure generally relate to the fabrication of integrated circuits. More particularly, the embodiments described herein provide techniques for depositing high-density films for patterning applications. In one or more embodiments, a method of processing a substrate is provided and includes flowing a deposition gas containing a hydrocarbon compound and a dopant compound into a processing volume of a process chamber having a substrate positioned on an electrostatic chuck, where the processing volume is maintained at a pressure of about 0.5 mTorr to about 10 Torr The method also includes generating a plasma at the substrate by applying a first RF bias to the electrostatic chuck to deposit a doped diamond-like carbon film on the substrate, where the doped diamond-like carbon film has a density of greater than 2 g/cc and a stress of less than -500 MPa.
-
公开(公告)号:WO2021255286A1
公开(公告)日:2021-12-23
申请号:PCT/EP2021/066714
申请日:2021-06-18
Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES , UNIVERSITE GRENOBLE ALPES , CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Inventor: BONVALOT, Marceline , VALLEE, Christophe , YEGHOYAN, Taguhi , POSSEME, Nicolas
IPC: H01L21/02 , H01L21/311 , H01L21/02183 , H01L21/02274 , H01L21/0228 , H01L21/0234 , H01L21/02521 , H01L21/0262 , H01L21/31111
Abstract: Procédé réalisation d'une couche sur certaines surfaces seulement d'une structure L'invention porte notamment sur un procédé de réalisation d'une couche recouvrant des premières surfaces (110) d'une structure (100) et laissant à découvert des deuxièmes surfaces (120), le procédé comprenant au moins: • · une séquence de formation d'une couche initiale (200) par dépôt par PEALD, la séquence comportant des cycles (1) comprenant chacun au moins: • - une injection (10) d'un premier précurseur dans une chambre de réaction, • - une injection (30) d'un deuxième précurseur dans la chambre de réaction et la formation dans la chambre de réaction d'un plasma. Les cycles sont effectués à une température Tcycle telle que Tcycle (Tmin - 20°C), Tmin étant la température minimale d'une fenêtre nominale (FT) de températures pour un dépôt PEALD. Le procédé comprend au moins une étape d'exposition de la couche initiale (200) à un plasma, dit plasma de densification (32, 32B, 60), configuré de sorte que l'exposition au flux (33) d'ions du plasma de densification (32, 32B, 60) rend le matériau reposant sur les premières surfaces (110) plus résistant à la gravure que le matériau reposant sur les deuxièmes surfaces (120). Le procédé comprend également une étape de gravure sélective de sorte que la couche initiale (200) recouvre les premières surfaces (110) de la face avant (101) de la structure (100) en laissant à découvert les deuxièmes surfaces (120).
-
公开(公告)号:WO2021252788A1
公开(公告)日:2021-12-16
申请号:PCT/US2021/036856
申请日:2021-06-10
Applicant: ENTEGRIS, INC.
Inventor: CHEN, Philip S. H. , CONDO, Eric , HENDRIX, Bryan C. , BAUM, Thomas H. , KUIPER, David
IPC: C23C16/455 , C23C16/36 , H01L21/02 , C07F7/10 , C07F7/18 , C01B21/0828 , C07F7/0814 , C07F7/1804 , C23C16/308 , C23C16/401 , C23C16/45536 , C23C16/45542 , C23C16/45553 , H01L21/02126 , H01L21/0214 , H01L21/02211 , H01L21/02274 , H01L21/0228
Abstract: Provided is a plasma enhanced atomic layer deposition (PEALD) process for depositing etch-resistant SiOCN films. These films provide improved growth rate, improved step coverage and excellent etch resistance to wet etchants and post-deposition plasma treatments containing O2 and NH3 co-reactants. This PEALD process relies on one or more precursors reacting in tandem with the plasma exposure to deposit the etch-resistant thin-films of SiOCN. The films display excellent resistance to wet etching with dilute aqueous HF solutions, both after deposition and after post-deposition plasma treatment(s). Accordingly, these films are expected to display excellent stability towards post-deposition fabrication steps utilized during device manufacturing and build.
-
-
-
-
-
-
-
-
-