Abstract:
Procédé et appareil d'analyse spectroscopique transitoire d'un métal en fusion selon lesquels une sonde (10) contenant un laser pulsé de puissance élevée (14) produisant un rayon laser pulsé ayant une forme d'onde d'impulsion sensiblement triangulaire est immergée dans le métal en fusion et irradie une quantité représentative du métal en fusion. Le rayon laser pulsé vaporise une partie du métal en fusion pour produire une colonne de plasma ayant une composition élémentaire représentative de la composition élémentaire du métal en fusion. Avant que la colonne de plasma n'atteigne l'équilibre thermique peu après la fin de l'impulsion laser, un détecteur spectroscopique (241) dans la sonde (10) détecte des inversions de lignes spectrales pendant une première fenêtre de temps court. Ensuite, lorsque le plasma de post-luminance se trouve en équilibre thermique, un second détecteur spectroscopique (242) également dans la sonde (10) effectue une seconde mesure spectroscopique de durée courte. Un télémètre (22) mesure et commande la distance entre la surface du métal en fusion et le laser pulsé (14).
Abstract:
In a spectrophotometer having an oscillating grating (25), an entrance slit (27) and an exit slit (32) and a light source (29) to irradiate said grating (25) through said entrance slit (27), the grating (23) and the light source (29) are mounted on a heat sink plate (13) and a fan (19) is provided to blow air over both sides of said heat sink plate (13). A temperature sensing transducer (35) is mounted in the heat sink plate (13) to sense the temperature of the heat sink plate (13) and the output of the photodetector is amplified by an amplifier (37) to energize the electric motor (41) of the fan (19) to control the speed of the fan (19) in accordance with the temperature sensed by the temperature sensor (35) to thereby maintain the temperature of the heat sink plate (13) at a constant value upon the system reaching equilibrium. In this manner, the wavelength drift of the system is reduced to a very low value.
Abstract:
A light detection device includes a Fabry-Perot interference filter provided with a light transmitting region on a predetermined line, a light detector disposed on one side with respect to the Fabry-Perot interference filter on the line, a package having an opening positioned on the other side with respect to the Fabry-Perot interference filter on the line, a light transmitting member provided in the package such that the opening is blocked, and a temperature control element having an endothermic region thermally connected to the Fabry-Perot interference filter and the light detector. The endothermic region is positioned on one side with respect to the light detector on the line.
Abstract:
The present invention concerns a method for an optical measurement method including the following steps: illuminating an object by light, receiving light from the illuminated object to a tunable Fabry-Perot interferometer, changing mirror gap of the Fabry-Perot interferometer, and detecting the signal passed through the mirror gap of the Fabry-Perot interferometer at different gap lengths. In accordance with the invention the detection is performed at different lengths of times at different gap lengths.
Abstract:
An optical head assembly for use in a spectrometer is provided that is configured to characterize one or more constituents within a sample gas. The assembly includes a thermoelectric cooler (TEC) having a cold side on one end and a hot side on an opposite end, a cold plate in thermal communication with the cold side of the TEC, a hot block in thermal communication with the hot side of the TEC, a light source in thermal communication with the cold plate such that a change in temperature of the TEC causes one or more properties of the light source (e.g., wavelength, etc.) to change, and an optical element in thermal communication with the cold plate positioned to collimate light emitted by the light source through the sample gas (such that properties of the optical element vary based on a change in temperature of the TEC).
Abstract:
A protective sheath having a closed end and an open end is sized to receive a hand held spectrometer. The spectrometer can be placed in the sheath to calibrate the spectrometer and to measure samples. In a calibration orientation, an optical head of the spectrometer can be oriented toward the closed end of the sheath where a calibration material is located. In a measurement orientation, the optical head of the spectrometer can be oriented toward the open end of the sheath in order to measure a sample. To change the orientation, the spectrometer can be removed from the sheath container and placed in the sheath container with the calibration orientation or the measurement orientation. Accessory container covers can be provided and placed on the open end of the sheath with samples placed therein in order to provide improved measurements.