Abstract:
Described herein is a resistor (11) to which a trimming process is applied (hereinafter, also called a trimming resistor), a method for manufacturing a trimming resistor (11) and a circuit substrate (30a) using the trimming resistor (11).
Abstract:
A method of production of electrodes for an electrostatic motor generating electrostatic force between a facing stator and slider, including forming core electrodes on a board of at least one of the stator and the slider by patterning a conductive substance and depositing a conductive substance on the core electrodes so that the side edges become rounded. Any method selected from electroplating, electroless plating, electrostatic coating, or screen printing can be used to deposit the conductive substance on the core electrodes. The core electrodes may be patterned using non-etching means. Further, electrodes for an electrostatic motor generating an electrostatic force between a facing stator and slider provided with core electrodes patterned on the board of at least one of the stator and the slider and a conductive substance deposited on the core electrodes to form deposition layers so that the side edges become rounded.
Abstract:
A structure of solder joint structure formed of zinc-based lead-free solder having excellent characteristics is disclosed. Between a first lead-free solder layer and a soldering pad, the following layers are formed: a tin-copper alloy layer formed on the pad; a first alloy layer formed of second lead-free layer of which main ingredients are tin and silver; and a second alloy layer formed between the first alloy layer and the first lead-free solder. This structure allows forming the solder joint structure formed of zinc-based lead-free solder having high joint strength.
Abstract:
As a substrate having a fine line and capable of suppressing crack generation in the substrate and peeling of the fine line, the invention discloses a configuration in which plural recesses are arranged on the fine line, and particularly a configuration in which the interval of the plural recesses does not exceed 200 µm. There is also disclosed a configuration in which the plural recesses are arranged along a direction crossing the longitudinal direction of the fine line.
Abstract:
A method of manufacturing multi-layer circuit board comprising: a hole forming step for forming through-holes or blind-holes in a plate-form or sheet-form board material, and a filling step for filling a paste into through- holes or blind-holes formed in the hole forming step by using a filling means. A second paste is supplied to the paste in the filling process by using a paste supplying means to stabilized a viscosity of the paste and the paste is reliably filled into the through- holes or the blind-holes.
Abstract:
This invention provides screen printing for forming a higher solder ball (bump). In first printing step, a first solder layer is printed. After drying in drying step, a second solder layer is printed on the first solder layer in second printing step. Then, in re-flow processing step, re-flow processing is performed, and the first solder layer and the second solder layer are melted. Finally, the melted layer is solidified in a ball shape to form the solder ball (bump). Since solder paste is printed in layers, an amount of the solder paste can be increased. Hence, a higher solder ball (bump) can be formed.
Abstract:
Holes (40a) are formed with a laser beam through an insulating substrate (40) on which a metallic layer (42) is formed and via holes (36a) are formed by filling up the holes (40a) with a metal (46). After the via holes (36a) are formed, a conductor circuit (32a) is formed by etching the metallic layer (42) and a single-sided circuit board (30A)is formed by forming projecting conductors (38a) on the surfaces of the via holes (36a). The projecting conductors (38a) on the circuit board (30A) are put on the conductor circuit (32b) of another single-sided circuit board (30B) with adhesive layers (50) composed of an uncured resin in-between and heated and pressed against the circuit (32b). The projecting conductors (38a) get in the uncured resin by pushing aside the resin and are electrically connected to the circuit (32b). Since single-sided circuit boards (30A, 30B, 30C, and 30D) can be inspected for defective parts before the boards (30A, 30B, 30C, and 30D) are laminated upon one another, only defectless single-sided circuit can be used in the step of lamination.
Abstract:
Holes (40a) are formed with a laser beam through an insulating substrate (40) on which a metallic layer (42) if formed. After the holes (40A) are formed, via holes (36a) are formed by filling up the holes (40a) with a metal (46) and a conductor circuit (32a) is formed by etching the metallic layer (42). Then, a single-sided circuit board (30A)is formed by forming projecting conductors (38a) on the surfaces of the via holes (36a). The projecting conductors (38a) of the circuit board (30A) are put on the conductor circuit (32b) of another single-sided circuit board (30B) with adhesive layers (50) composed of an uncured resin in between and heated and pressed against the circuit (32b). The projecting conductors (38a) get in the uncured resin by pushing aside the resin and are electrically connected to the circuit (32b). Since single-sided circuit boards (30A, 30B, 30C, and 30D) can be inspected for defective parts before the boards (30A, 30B, 30C, and 30D) are laminated upon another, only defectless single-sided circuit boards can be used in the step of lamination.