Abstract:
A metalized plastic article and a method for selectively metallizing a surface of a plastic substrate are provide. The metalized plastic article includes a plastic substrate and a metal plating layer formed on the surface of the plastic substrate. At least a surface layer of the plastic substrate covered by the metal plating layer is formed by a plastic composition. The plastic composition includes a base resin and a doped tin oxide. A doping element of the doped tin oxide is at least one selected from a group consisting of cerium, lanthanum, fluorine and tantalum. The metalized plastic article of the present disclosure has a good light absorption performance and a high chemical plating activity.
Abstract:
The present disclosure provides a metal compound. The metal compound is represented by a formula (I): Cu2AαB2-αO4-&bgr; (I). A contains at least one element selected from the groups 6 and 8 of the periodic table. B contains at least one element selected from the group 13 of the periodic table, 0
Abstract:
The present disclosure discloses an anti-yellowing composition comprising at least a phosphorus-containing compound and at least a pentaerythritol ester, wherein the phosphorus-containing compound is selected from a phosphate salt, which is present in an amount of 100-1600 parts by weight relative to 100 parts by weight of the pentaerythritol ester. The present disclosure also discloses a resin composition containing the anti-yellowing composition, and a metal-resin composite formed with the resin composition and a metal substrate, and preparation method and use thereof. The present disclosure further discloses a electronic product shell formed with the resin composition and a metal shell body.
Abstract:
A silicone composition, a reflective coating and a preparation method therefor, and a photovoltaic assembly comprising the reflective coating are disclosed. The silicone composition comprises a base polymer component, a catalyst, a cross-linking agent and reflective particles, wherein the base polymer component, the catalyst and the cross-linking agent are not mixed simultaneously before use; the base polymer component comprises 100 parts by weight of a polymethylsiloxane having at least two Si-Vi bonds per molecule, 5-15 parts by weight of a hydrogenated epoxy resin- or cycloaliphatic epoxy resin-modified polymethylvinylsiloxane terminated with a hydroxyl group, 10-20 parts by weight of a siloxane resin having at least two Si-Vi bonds; and the cross-linking agent is a polyorganosiloxane having at least two Si-H bonds.
Abstract:
Disclosed are a carrier communication method based on electric automobile charging/discharging, comprising the following steps: S1: after being powered up and started, an electric automobile detecting whether a carrier signal from a peripheral device is received through an interface wire harness and whether the carrier signal is correct; S2: when detecting the carrier signal and detecting that the carrier signal is correct, the electric automobile receiving the carrier signal through the interface wire harness; and S3: the electric automobile performing coupling and filtering on the received carrier signal to convert the carrier signal into a standard carrier signal, and demodulating the standard carrier signal into a digital signal to obtain information of the peripheral device. The method, on the basis of not increasing the number of wire harness, may implement data transmission and sharing between an automobile and ECU modules of a peripheral device, and carrier communication with other signal lines as communication media at the same time, so as to avoid construction and investment of a new communication network, and reduce manufacturing cost and maintenance difficulty. Further disclosed are a carrier communication system and a carrier apparatus based on electric automobile charging/discharging.
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises forming a nanopore in a surface of a metal sheet; melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore; and injection molding the thermoplastic resin onto the surface of the metal sheet. The thermoplastic resin is a mixture of a main resin and a polyolefin resin, the main resin is a mixture of polyphenylene oxide and a polyamide, and the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
A method for metalizing a polymer substrate and a polymer article prepared thereof. First a polymer substrate having a base polymer and at least one metal compound dispersed in the base polymer is provided. A surface of the polymer substrate is then irradiated with an energy beam such that a water contact angle of the surface of the polymer substrate is at least 120°. And then the surface of the polymer substrate is subjected to chemical plating.
Abstract:
A method for selective metallization of a surface of a polymer article is provided. The polymer article contains a base polymer and at least one metal compound dispersed in the base polymer. The method includes gasifying at least a part of a surface of the polymer article by irradiating the surface with an energy source, and forming at least one metal layer on the surface of the polymer article by chemical plating. The metal compound contains a tin oxide doped with at least one doping element selected from a group including: V, Sb, In, and Mo.
Abstract:
A coating composition, a composite prepared by using the coating composition, and a method for preparing the composite are provided. The coating composition includes a solvent, an adhesive, and a catalyst precursor including at least one chosen from SnO2, ZnSnO3 and ZnTiO3.