摘要:
A silicon nitride layer is deposited on a substrate within a processing region by introducing a silicon containing precursor into the processing region, exhausting gases in the processing region including the silicon containing precursor while uniformly, gradually reducing a pressure of the processing region, introducing a nitrogen containing precursor into the processing region, and exhausting gases in the processing region including the nitrogen containing precursor while uniformly, gradually reducing a pressure of the processing region. During the steps of exhausting, the slope of the pressure decrease with respect to time is substantially constant.
摘要:
A VPE reactor is improved by providing temperature control to within 0.5° C., and greater process gas uniformity via novel reactor shaping, unique wafer motion structures, improvements in thermal control systems, improvements in gas flow structures, improved methods for application of gas and temperature, and improved control systems for detecting and reducing process variation.
摘要:
Composition and method for depositing ruthenium. A composition containing ruthenium tetroxide RuO4 is used as a precursor solution 608 to coat substrates 400 via ALD, plasma enhanced deposition, and/or CVD. Periodic plasma densification may be used.
摘要:
A linear cluster deposition system includes a plurality of reaction chambers positioned in a linear horizontal arrangement. First and second reactant gas manifolds are coupled to respective process gas input port of each of the reaction chambers. An exhaust gas manifold having a plurality of exhaust gas inputs is coupled to the exhaust gas output port of each of the plurality of reaction chambers. A substrate transport vehicle transports at least one of a substrate and a substrate carrier that supports at least one substrate into and out of substrate transfer ports of each of the reaction chambers. At least one of a flow rate of process gas into the process gas input port of each of the reaction chambers and a pressure in each of the reaction chambers being chosen so that process conditions are substantially the same in at least two of the reaction chambers.
摘要:
A multi-chamber CVD system includes a plurality of substrate carriers where each substrate carrier is adapted to support at least one substrate. A plurality of enclosures are each configured to form a deposition chamber enclosing one of the plurality of substrate carriers to maintain an independent chemical vapor deposition process chemistry for performing a processing step. A transport mechanism transports each of the plurality of substrate carriers to each of the plurality of enclosures in discrete steps that allow processing steps to be performed in the plurality of enclosures for a predetermined time. In some embodiments, the substrate carrier can be rotatable.
摘要:
A substrate carrier for a parallel wafer processing reactor supports a plurality of substrates. The substrate carrier includes a plurality of susceptors, which may be thermal plates or annular rings that are arranged horizontally in a vertical stack. The substrates are mounted between pairs of susceptors on two or more supports provided around the outer periphery of the susceptors. The number of substrates mounted between each pair of susceptors may the same or different but is two or more between at least one pair of susceptors.
摘要:
Apparatus for treating wafers using a wafer carrier rotated about an axis is provided with a ring which surrounds the wafer carrier during operation. Treatment gasses directed onto a top surface of the carrier flow outwardly away from the axis over the carrier and over the ring, and pass downstream outside of the ring. The outwardly flowing gasses form a boundary over the carrier and ring. The ring helps to maintain a boundary layer of substantially uniform thickness over the carrier, which promotes uniform treatment of the wafers.
摘要:
A method for void free filling with in-situ doped amorphous silicon of a deep trench structure is provided in which a first fill is carried out in a way so that film deposition occurs from the bottom of the trench upwards, with step coverage well in excess of 100%. In a second fill step, deposition conditions are changed to reduce the impact of dopant on deposition rate, and deposition proceeds at a rate which exceeds the deposition rate of the first fill. In an application of this method to the formation of deep trench capacitor structures, the intermediate steps further including the capping of the void free filled trench with a thick layer of amorphous silicon, planarization of the wafer thereafter, followed by a thermal anneal to re-distribute the dopant within the filled trench. Thereafter, additional steps can be performed to complete the formation of the capacitor structure.
摘要:
A method for void free filling with in-situ doped amorphous silicon of a deep trench structure is provided in which a first fill is carried out in at a temperature, pressure and dopant to silane ratio such that film deposition occurs from the bottom of the trench upwards. By way of this first fill, step coverages well in excess 100% are achieved. In the second fill step, deposition is carried out under changed conditions so as to reduce the impact of dopant on deposition rate, whereby trench fill is completed at a deposition rate which exceeds the deposition rate of the first fill. In an application of this method to the formation of deep trench capacitor structures, the intermediate steps further including the capping of the void free filled trench with a thick layer of amorphous silicon, planarization of the wafer thereafter, followed by a thermal anneal to re-distribute the dopant within the filled trench. Thereafter, additional steps can be performed to complete the formation of the capacitor structure.
摘要:
A CMOS gate stack that increases the inversion capacitance compared to a conventional CMOS gate stack has been described. Using a poly-SiGe gate, instead of the conventional poly-Si gate near the gate dielectric layer, increases the amount of implanted dopant that can be activated. This increase overcomes the polysilicon depletion problem that limits the inversion capacitance in the conventional CMOS gate stack. To integrate the poly-SiGe layer into the gate stack, a thin α-Si layer is deposited between the gate dielectric layer and the poly-SiGe layer. To ensure proper salicide formation, a poly-Si layer is capped over the poly-SiGe layer. In order to obtain a fined-grained poly-Si over poly-SiGe, a second α-Si layer is deposited between the poly-Si layer and the poly-SiGe layer.