Abstract:
Described are a process and method to synthesize ultrafine materials such as metal oxides and highly dispersed mixed metal oxides. A process for forming an ultrafine material comprises mixing two or more liquid precursor compositions in a mixing apparatus to form a precursor mixture, wherein the mixing apparatus is in fluid communication with an atomizer; atomizing the precursor mixture in the atomizer to form droplets; directing the droplets to a reaction chamber in communication with a volumetric heating source, wherein the a reaction chamber is in fluid communication with the atomizer; volumetrically heating the droplets to produce the ultrafine material; and isolating the ultrafine material.
Abstract:
A process for cracking hydrocarbons at atmospheric pressure includes the following steps: providing a catalyst, passing a gaseous hydrocarbon over the catalyst and exposing the catalyst to microwave energy. The hydrocarbons are broken down into lower Carbon number molecules.
Abstract:
A PEM fuel cell system in which an oxidizer is provided and in which the catalyst for the oxidizer is an OMS-2 catalyst and, in particular, an M-OMS-2 catalyst. Preferable catalysts are Co-OMS-2, Cu-OMS-2 and Ag-OMS-2 and, more preferably, Ag-OMS-2. Also, the effectiveness of the oxidizer is enhanced by one or more of the controlled addition of oxidant to the fuel feed and/or oxidizer, controlling the space velocity of the fuel feed and controlling the operating temperature of the oxidizer. A system for regeneration of the M-OMS-2 catalyst and a method of making the catalyst are additionally provided.
Abstract:
A process for decomposing nitrogen oxides includes the following steps: providing a catalyst, passing a gaseous nitrogen oxide over the catalyst and exposing the catalyst to microwave energy. The gaseous nitrogen oxide is broken down into nitrogen and oxygen molecules.
Abstract:
A process for removing sulfur and sulfur compounds from a catalyst includes the following steps: exposing the catalyst to a reducing atmosphere and exposing the catalyst to microwave energy. Desorption of the sulfur and sulfur compounds from the catalyst occurs at a temperature less than 600 degrees centigrade.
Abstract:
Described is a process to synthesize nano-size Zeolite A from an amorphous gel precursor which can be synthesized via reaction of NaAlO2, NaOH, and tetraethoxysilane (TEOS). Zeolite A with particle sizes of ˜150 nm was made by transformation of the amorphous precursor in (CH3)4NOH solution with Zeolite A seeding. The nano-sized Zeolite A can be part of processes for making non-phosphate detergent where the as-synthesized Zeolite A used as builders, for making thin films for separation and/or catalysis, for making secondary ordered patterns.
Abstract:
A method for coating articles includes contacting a substrate with a mixture comprising a coating composition and a carrier fluid effective to wet at least a portion of the substrate, and removing the carrier fluid by microwave heating for a time and at a temperature effective to produce a coating comprising the coating composition on at least a portion of substrate. The coated articles may be useful in a variety of applications including ion, molecule, and gas separation/filtration; ion-exchanging; semiconductors; catalysis; and as electrodes, among others.
Abstract:
A method for forming an imine comprises reacting a first reactant comprising a hydroxyl functionality, a carbonyl functionality, or both a hydroxyl functionality and a carbonyl functionality with a second reactant having an amine functionality in the presence of ordered porous manganese-based octahedral molecular sieves and an oxygen containing gas at a temperature and for a time sufficient for the imine to be produced.
Abstract:
Processes for preparing mixed metal oxide catalysts suitable for partial oxidation of alkanes, alkenes and mixtures thereof, where in the processes comprise the steps of: providing an aqueous aerosol of one or more metal oxide catalyst precursors; and irradiating the aqueous aerosol of one or more metal oxide catalyst precursors with microwave energy. Optionally, the catalyst may be further modified using one or more chemical treatments, one or more physical treatments and one or more combinations of chemical and physical treatments, to further improve catalyst performance characteristics.