Abstract:
A beam-splitting apparatus arranged to receive an input radiation beam and split the input radiation beam into a plurality of output radiation beams. The beam-splitting apparatus comprising a plurality of reflective diffraction gratings arranged to receive a radiation beam and configured to form a diffraction pattern comprising a plurality of diffraction orders, at least some of the reflective diffraction gratings being arranged to receive a 0th diffraction order formed at another of the reflective diffraction gratings. The reflective diffraction gratings are arranged such that the optical path of each output radiation beam includes no more than one instance of a diffraction order which is not a 0th diffraction order.
Abstract:
An apparatus (60) for adjusting an intensity of radiation. The apparatus comprises a grating (61) for receiving a radiation beam (Ba) and for directing at least a portion of the radiation beam in a first direction in the form of a first reflected radiation beam (Ba0), and one or more first actuators operable to rotate the grating to adjust a grazing angle between the radiation beam and a surface of the grating so as to vary an intensity of the reflected radiation beam.
Abstract:
A reflector (2) comprising a plate (4) supported by a substrate (8), wherein the plate has a reflective surface (5) and is secured to the substrate by adhesive free bonding, and wherein a cooling channel array (10) is provided in the reflector. The channels (16) of the cooling channel array may be formed from open channels in a surface of the substrate, the open channels being closed by the plate to create the channels.
Abstract:
A method of patterning lithographic substrates, the method comprising using a free electron laser to generate EUV radiation and delivering the EUV radiation to a lithographic apparatus which projects the EUV radiation onto lithographic substrates, wherein the method further comprises reducing fluctuations in the power of EUV radiation delivered to the lithographic substrates by using a feedback-based control loop to monitor the free electron laser and adjust operation of the free electron laser accordingly.
Abstract:
A radiation system includes a beam splitting apparatus configured to split a main radiation beam into a plurality of branch radiation beams and a radiation alteration device arranged to receive an input radiation beam and output a modified radiation beam, wherein the radiation alteration device is configured to provide an output modified radiation beam which has an increased etendue, when compared to the received input radiation beam, wherein the radiation alteration device is arranged such that the input radiation beam which is received by the radiation alteration device is a main radiation beam and the radiation alteration device is configured to provide a modified main radiation beam to the beam splitting apparatus, or wherein the radiation alteration device is arranged such that the input radiation beam which is received by the radiation alteration device is a branch radiation beam output from the beam splitting apparatus.
Abstract:
Methods and apparatus for determining an intensity profile of a radiation beam. The method comprises providing a diffraction structure, causing relative movement of the diffraction structure relative to the radiation beam from a first position wherein the radiation beam does not irradiate the diffraction structure to a second position wherein the radiation beam irradiates the diffraction structure, measuring, with a radiation detector, diffracted radiation signals produced from diffraction of the radiation beam by the diffraction structure as the diffraction structure transitions from the first position to the second position or vice versa, and determining the intensity profile of the radiation beam based on the measured diffracted radiation signals.
Abstract:
An optical system (OS) for focusing a beam of radiation (B) on a region of interest in a metrology apparatus is described. The beam of radiation (B) comprises radiation in a soft X-ray or Extreme Ultraviolet spectral range. The optical system (OS) comprises a first stage (S1) for focusing the beam of radiation at an intermediate focus region. The optical system (OS) comprises a second stage (S2) for focusing the beam of radiation from the intermediate focus region onto the region of interest. The first and second stages each comprise a Kirkpatrick-Baez reflector combination. At least one reflector comprises an aberration-correcting reflector.
Abstract:
Disclosed is component for a radiation source, said radiation source being operable to generate radiation from a fuel, said component having a surface comprising a plurality of first regions that have a high wettability by said fuel, separated by second regions which have a low wettability by said fuel. Said component may comprise a screening element for a droplet generator or contamination trap, for example.
Abstract:
Disclosed is a method of metrology. The method comprises illuminating a radiation onto a substrate; obtaining measurement data relating to at least one measurement of each of one or more structures on the substrate; using a Fourier-related transform to transform the measurement data into a transformed measurement data; and extracting a feature of the substrate from the transformed measurement data, or eliminating an impact of a nuisance parameter.
Abstract:
A grating is provided on a mirror for specularly reflecting and diffracting a grazing-incidence beam of radiation and has a periodic structure with a grating period comprising first (ridge) and second (trench) substructures either side of a sidewall 806 facing the incident beam 800. The ridge is configured to specularly reflect the beam from the flat top 808 of the ridge into a specularly reflected beam 810 in a zeroth-order direction β′=β. The grating is configured with fixed or varying pitch to diffract the beam from the grating periods in one or more non-zero-diffraction-order direction β′≠β. The shape of the trench may be is described by structural parameters top width and depth that define the aspect ratio of the trench. The shape is determined such that any rays (and optionally diffraction) of the beam that reflect once from the trench floor in the zeroth-order direction are obscured by the sidewall.