摘要:
A projection objective for applications in microlithography, a microlithography projection exposure apparatus with a projection objective, a microlithographic manufacturing method for microstructured components, and a component manufactured using such a manufacturing method are disclosed. The projection objective includes an optical component configured so that, during use of the projection objective, the optical component generates a stray light component in the exposure field of the projection objective which adapts a parameter of the projection objective to a parameter of a second projection objective. The parameter is the stray light component at the exposure field of the projection objective and/or a variation of the stray light component at the exposure field of the projection objective. The parameter of the second projection objective is a stray light component at an exposure field of the second projection objective and/or a variation of the stray light component at the exposure field of the second projection objective. The second projection objective is different from the projection objective.
摘要:
A projection objective is disclosed. The projection objective can include a plurality of optical elements arranged to image a pattern from an object field in an object surface of the projection objective to an image field in an image surface of the projection objective with electromagnetic operating radiation from a wavelength band around an operating wavelength λ. The plurality of optical elements can include an optical correction plate that includes a body comprising a material transparent to the operating radiation, the body having a first optical surface, a second optical surface, a plate normal substantially perpendicular to the first and second optical surfaces, and a thickness profile defined as a distance between the first and second optical surfaces measured parallel to the plate normal. The first optical surface can have a non-rotationally symmetric aspheric first surface profile with a first peak-to-valley value PV1>λ. The second optical surface can have a non-rotationally symmetric aspheric second surface profile with a second peak-to-valley value PV2>λ. A thickness of the optical correction plate can vary by less than 0.1*(PV1+PV2)/2 across the optical correction plate.
摘要:
A lithographic method of manufacturing a miniaturized device using a projection exposure system involves illuminating the object plane of an imaging optics of the projection exposure system with measuring light; detecting, for each of a plurality of locations on an image plane of the imaging optics, an angular distribution of an intensity of the measuring light traversing the image plane at the respective location; adjusting a telecentricity of the projection exposure system based on a selected patterning structure to be imaged and on the plurality of the detected angular distributions; disposing the selected pattern structure to be imaged in a region of the object plane of the imaging optics; disposing a substrate carrying a resist in a region of the image plane of the imaging optics and exposing the resist with imaging light using the projection exposure system with the adjusted telecentricity; and developing the exposed resist and processing the substrate with the developed resist.
摘要:
In the case of a projection exposure method for exposing a radiation-sensitive substrate, arranged in the region of an image surface of a projection objective, with at least one image of a pattern of a mask arranged in the region of an object surface of the projection objective, a mask is arranged in the region of the object surface of the projection objective, the mask having a first pattern area with a first subpattern, and at least one second pattern area, arranged laterally offset from the first pattern area, with a second subpattern. The mask is scanned by relative movement between the mask and the illumination field of the illumination system in such a way that initially the first subpattern and thereafter the second subpattern is irradiated with the illumination radiation of the illumination field. The first subpattern is irradiated during a first illumination time interval with a first angular distribution, adapted to the first subpattern, of the illumination radiation. Thereafter, the second subpattern is irradiated during the second illumination time interval with a second angular distribution, adapted to the second subpattern, of the illumination radiation, said second angular distribution differing from the first angular distribution.
摘要:
In general, in one aspect, the invention features a catadioptric projection objective having a plurality of optical elements arranged along an optical axis to image a pattern arranged in an object surface of the projection objective onto an image surface of the projection objective. The optical elements include a concave mirror; a first deflecting mirror tilted relative to the optical axis by a first tilt angle t1 about a first tilt axis to deflect light from the object surface towards the concave mirror or to deflect light from the concave mirror towards the image surface; and a second deflecting mirror tilted relative to the optical axis by a second tilt angle t2 about a second tilt axis. The first deflecting mirror has a first reflective coating with reflectivity Rs1(α1) for s-polarized light and a reflectivity Rp1(α1) for p-polarized light incident on the first deflecting mirror at first angles of incidence α1 from a first range of angles of incidence according to (t1−Δα1)≦α1≦(t1+Δα1). The second deflecting mirror has a second reflective coating with a reflectivity Rs2(α2) for s-polarized light and a reflectivity Rp2(α2) for p-polarized light incident on the second deflecting mirror at second angles of incidence α2 from a second range of angles of incidence according to (t2−Δα2)≦α2≦(t2+Δα2). A first reflectivity sum, RsPE, for s-polarized light of polar edge rays accumulated upon reflection on the first and second deflecting mirrors is substantially equal to a second reflectivity sum, RpE for p-polarized light of equatorial edge rays accumulated upon reflection on the first and second deflecting mirrors.
摘要:
1. Method for patterning a substrate using multiple exposure.2.1. The invention relates to a method for patterning a substrate using exposure processes of an adjustable optical system, a multiple exposure being used for producing a structure image on the substrate.2.2. According to the invention, for at least one of the plurality of exposures, the imaging quality of the optical system is determined by means of a respective measurement step and at least one parameter of the optical system that influences the imaging quality is set depending on this.2.3. Use e.g. for the patterning of semiconductor wafers in microlithography projection exposure apparatuses.
摘要:
In the case of a projection exposure method for exposing a radiation-sensitive substrate, arranged in the region of an image surface of a projection objective, with at least one image of a pattern of a mask arranged in the region of an object surface of the projection objective, a mask is arranged in the region of the object surface of the projection objective, the mask having a first pattern area with a first subpattern, and at least one second pattern area, arranged laterally offset from the first pattern area, with a second subpattern. The mask is scanned by relative movement between the mask and the illumination field of the illumination system in such a way that initially the first subpattern and thereafter the second subpattern is irradiated with the illumination radiation of the illumination field. The first subpattern is irradiated during a first illumination time interval with a first angular distribution, adapted to the first subpattern, of the illumination radiation. Thereafter, the second subpattern is irradiated during the second illumination time interval with a second angular distribution, adapted to the second subpattern, of the illumination radiation, said second angular distribution differing from the first angular distribution.
摘要:
In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
摘要:
The disclosure relates to an optical system, such as a projection exposure apparatus for semiconductor lithography, including a manipulable correction arrangement for reducing image aberrations. In some embodiments, the system includes at least one manipulator configured to reduce image aberrations. The manipulator can include at least one optical element which can be manipulated by at least one actuator. The manipulator can be formed in changeable fashion together with an actuator.
摘要:
An objective and a method for operating an objective, in particular a projection objective or an illumination objective for microlithography for imaging a reticle onto a wafer, with a plurality of optical elements that are arranged along a ray path, wherein at least one optical element of a first kind (1) is provided, which is irradiated only partially by a ray bundle, wherein the one or more optical element(s) of the first kind are rotatably mounted or positionable about the optical axis or an axis parallel thereto, wherein, for each optical element of the first kind at least two mounting positions are provided, and wherein the rotation angle between the two mounting positions is defined by the surface (7) irradiated by the ray bundle such that, in the various mounting positions, the surfaces irradiated by the ray path do not overlap.