摘要:
MBE growth of epitaxial layers on selected areas of a growth surface (e.g., wafer or epi-layer grown thereon) is achieved by masking portions of the surface with an amorphous material and directing molecular beams at the masked surface so that a polycrystalline layer deposits on the mask and an epi-layer grows in the unmasked zones. The mask material is then exposed to a suitable etchant effective to dissolve that material, lift-off the polycrystalline layer and expose the underlying surface. Self-aligned contacts can be fabricated by depositing a metal layer prior to etching. Subsequent lift-off removes both the polycrystalline layer and the overlying metal. This process can be utilized in the fabrication of FETs and opto-electronic devices such as double heterostructure junction lasers.
摘要:
Techniques for amplifying light produced by a quantum cascade laser are described. An assembly according to the present invention includes an optical amplifier having an optical input and an optical output. The optical output has an area significantly greater than that of the optical output and the geometry of the amplifier is such that the amplifier widens from the optical input to the optical output. The optical amplifier is formed of a layered waveguide structure which achieves quantum confinement of electrons and photons within the active region. A distributed feedback laser is suitably coupled to the optical amplifier at the optical input of the amplifier. The widening of the amplifier makes available a large number of electrons, so that the amplifier is able to produce many photons resulting from stimulated transitions caused by introduction of light to the optical input of the amplifier, even if the great majority of the transitions occur nonradiatively.
摘要:
An optical device includes a stack of at least two different intersubband (ISB) optical sub-devices in which the gain/loss profiles of the individual ISB sub-devices are mutually adapted, or engineered, so as to generate a predetermined overall function for the combination. We define this combination device as being heterogeneous since not all of the individual ISB sub-devices are identical to one another. Illustratively, the parameters of each individual ISB sub-device that might be subject to this engineering process include: the peak energy of the ISB optical transitions (emission or absorption) associated with each RT region, the position of each sub-device in the stack; the oscillator strengths of these ISB transitions; the energy bandwidth of each transition; and the total length of the RT and I/R regions of each ISB sub-device. In one embodiment, our approach may be used to engineer a gain profile that has peaks at a multiplicity of different wavelengths, thus realizing a multi-wavelength ISB optical source in which the applied electric field self-proportions itself so that each individual ISB sub-device experiences the appropriate field strength for its particular design. Alternatively, the gain profile may be engineered to be relatively flat over a predetermined wavelength range. In another embodiment, our approach may be used to generate a function that compensates for a characteristic of another device. For example, our heterogeneous ISB device may be engineered to have a gain profile that compensates for the loss profile of another device. Alternatively, the gain/loss profile may be engineered to produce a nonlinear refractive index profile in our device that compensates for that of another device (e.g., an optical fiber).
摘要:
An article comprising a QC-DFB laser is disclosed. In the QC-DFB laser, an overlying grating structure achieves relatively strong coupling of the guided mode to the grating, and is thus highly effective in inducing single-mode operation even under cw operating conditions. The grating structure includes grooves etched in a plasmon-enhanced confinement layer (PECL) disposed adjacent and in contact with an upper metallic electrode. The grating structure and the PECL are designed such that in the grooves, the laser mode travelling in the waveguide can couple efficiently to the surface-plasmon at the electrode interface. This results in strong modulation of the laser mode, leading to strong modulation of, inter alia, the effective refractive index.
摘要:
The novel unipolar laser resembles a quantum cascade laser but utilizes radiative transitions between upper and lower minibands of superlattices, with injection of charge carriers from the lower miniband into the upper miniband of the adjacent downstream superlattice facilitated by a multilayer injector region. The lasing wavelength is typically in the mid-infrared, selectable by choice of the superlattice parameters. The novel laser is potentially well suited for high power operation, since it utilizes carrier transport in minibands, as opposed to tunneling between discrete energy states.
摘要:
Surface contamination of Group III(a)-V(a) substrates prior to epitaxial growth can influence structural, optical, and electrical properties of the resulting layers. Of the common contaminants, sulfur, nitrogen, carbon, and oxygen, which are found on substrate surfaces, only carbon cannot be removed by simple heating. By passivating the substrate surface with a native oxide coating after chemical etching and before atmospheric exposure, the carbon-containing contamination can be virtually eliminated since these compounds have low sticking coefficients on the native oxide. The oxide can then be readily stripped off by heating in a vacuum to leave essentially an atomically clean substrate surface.
摘要:
In order to insure that the doping profiles of Sn-doped Group III(a)-V(a) Ga-containing layers grown by molecular beam epitaxy follow relatively closely the time-intensity profile of the dopant beam, the substrate temperature should not exceed about 550.degree.C.
摘要:
An optical gain medium has first and second active layers and an injector layer interposed between the first and second active layers. The active layers have upper minibands and lower minibands. The injector layer has a miniband that transports charge carriers from the lower miniband of the first active layer to an excited state in the upper miniband of the second active layer in response to application of a voltage across the optical gain medium.
摘要:
A solid state laser comprises a cavity resonator in the form of a generally cylindrical body and, located within the resonator, an active region which generates lasing light when suitably pumped. The resonator has a relatively high effective refractive index (n>2 and typically n>3) is sufficiently deformed from circularity so as to support at least one librational mode (e.g., a V-shaped or a bow-tie mode, the latter being presently preferred for generating relatively high power, directional outputs). Specifically described is a Group III-V compound semiconductor, quantum cascade (QC), micro-cylinder laser in which the resonator has a flattened quadrupolar deformation from circularity. This laser exhibits both a highly directional output emission and a three-order of magnitude increase in optical output power compared to conventional semiconductor micro-cylinder QC lasers having circularly symmetric resonators.
摘要:
An intersubband semiconductor light source comprises a core region that includes a unipolar, radiative transition (RT) region having upper and lower energy levels, an injector-only (I) region disposed on one side of the RT region, and a reflector/extractor-only (R/E) region disposed on the other side of the RT region. The I region has a first miniband of energy levels aligned so as to inject electrons into the upper energy level, and the R/E region has a second miniband of energy levels aligned so as to extract electrons from the lower energy level. The R/E region also has a minigap aligned so as to inhibit the extraction of electrons from the upper level. A suitable voltage applied across the core region is effective to cause the RT region to generate light at a wavelength determined by the energy difference between the upper and lower energy levels. Low voltage operation at less than 3 V is described.