Abstract:
Metal coordination complexes comprising a metal atom coordinated to at least one diazabutadiene ligand having a structure represented by: where each R is independently a C1-C13 alkyl or aryl group and each R′ is independently H, C1-C10 alkyl or aryl group are described. Processing methods using the metal coordination complexes are also described.
Abstract:
Methods are described herein for etching metal films which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal while very slowly removing the other exposed materials. A thin metal oxide layer may be present on the surface of the metal layer, in which case a local plasma from hydrogen may be used to remove the oxygen or amorphize the near surface region, which has been found to increase the overall etch rate.
Abstract:
Methods for depositing a film comprising exposing a substrate surface to a bis-amidinate metal precursor and a co-reactant to form a metal containing film are described. The bis-amidinate metal precursor comprises a metal atom comprising one or more lanthanide.
Abstract:
A process to selectively etch a substrate surface comprising multiple metal oxides comprising exposing the substrate surface to a halogenation agent, and then exposing the substrate surface to a ligand transfer agent. The etch rate of the metals in the multiple metal oxides is substantially uniform.
Abstract:
Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
Abstract:
Provided are methods for etching films comprising transition metals. Certain methods involve activating a substrate surface comprising at least one transition metal, wherein activation of the substrate surface comprises exposing the substrate surface to heat, a plasma, an oxidizing environment, or a halide transfer agent to provide an activated substrate surface; and exposing the activated substrate surface to a reagent comprising a Lewis base or pi acid to provide a vapor phase coordination complex comprising one or more atoms of the transition metal coordinated to one or more ligands from the reagent. Certain other methods provide selective etching from a multi-layer substrate comprising two or more of a layer of Co, a layer of Cu and a layer of Ni.
Abstract:
Metal coordination complexes comprising a metal atom coordinated to at least one diazabutadiene ligand having a structure represented by: where each R is independently a C1-C13 alkyl or aryl group and each R′ is independently H, C1-C10 alkyl or aryl group are described. Processing methods using the metal coordination complexes are also described.
Abstract:
Methods for depositing a yttrium-containing film through an atomic layer deposition process are described. Some embodiments of the disclosure utilize a plasma-enhanced atomic layer deposition process. Also described is an apparatus for performing the atomic layer deposition of the yttrium containing films.
Abstract:
Metal coordination complexes comprising a metal atom coordinated to at least one diazabutadiene ligand having a structure represented by: where each R is independently a C1-C13 alkyl or aryl group and each R′ is independently H, C1-C10 alkyl or aryl group are described. Processing methods using the metal coordination complexes are also described.
Abstract:
Methods for depositing titanium oxide films by atomic layer deposition are disclosed. Titanium oxide films may include a titanium nitride cap, an oxygen rich titanium nitride cap or a mixed oxide nitride layer. Also described are methods for self-aligned double patterning including titanium oxide spacer films.