摘要:
Semiconductor devices are formed with a gate last, high-K/metal gate process with complete removal of the polysilicon dummy gate and with a gap having a low aspect ratio for the metal fill. Embodiments include forming a dummy gate electrode on a substrate, the dummy gate electrode having a nitride cap, forming spacers adjacent opposite sides of the dummy gate electrode forming a gate trench therebetween, dry etching the nitride cap, tapering the gate trench top corners; performing a selective dry etch on a portion of the dummy gate electrode, and wet etching the remainder of the dummy gate electrode.
摘要:
Semiconductor devices are formed with a gate last, high-K/metal gate process with complete removal of the polysilicon dummy gate and with a gap having a low aspect ratio for the metal fill. Embodiments include forming a dummy gate electrode on a substrate, the dummy gate electrode having a nitride cap, forming spacers adjacent opposite sides of the dummy gate electrode forming a gate trench therebetween, dry etching the nitride cap, tapering the gate trench top corners; performing a selective dry etch on a portion of the dummy gate electrode, and wet etching the remainder of the dummy gate electrode.
摘要:
Generally, the subject matter disclosed herein relates to modern sophisticated semiconductor devices and methods for forming the same, wherein a reduced threshold voltage (Vt) may be achieved in HK/MG transistor elements that are manufactured based on replacement gate electrode integrations. One illustrative method disclosed herein includes forming a first metal gate electrode material layer above a gate dielectric material layer having a dielectric constant of approximately 10 or greater. The method further includes exposing the first metal gate electrode material layer to an oxygen diffusion process, forming a second metal gate electrode material layer above the first metal gate electrode material layer, and adjusting an oxygen concentration gradient and a nitrogen concentration gradient in at least the first metal gate electrode material layer and the gate dielectric material layer.
摘要:
When forming sophisticated high-k metal gate electrode structures on the basis of a replacement gate approach, the fill conditions upon filling in the highly conductive electrode metal, such as aluminum, may be enhanced by removing an upper portion of the final work function metal, for instance a titanium nitride material in P-channel transistors. In some illustrative embodiments, the selective removal of the metal-containing electrode material in an upper portion of the gate opening may be accomplished without unduly increasing overall process complexity.
摘要:
Generally, the present disclosure is directed to forming conductive metal fill materials in replacement gate electrodes using reduced deposition temperatures. One illustrative method disclosed herein includes, among other things, forming a sacrificial gate structure above a semiconductor layer, the sacrificial gate structure including a dummy gate electrode, and forming a gate cavity by removing at least the dummy gate electrode from above the semiconductor layer. The disclosed method further includes forming a work-function material of a replacement metal gate electrode in the gate cavity, and forming a conductive metal fill material in the gate cavity and above the work-function material, wherein forming the conductive metal fill material includes performing a material deposition process at a temperature below approximately 450° C.
摘要:
In a replacement gate approach, the sacrificial gate material is exposed on the basis of enhanced process uniformity, for instance during a wet chemical etch step or a CMP process, by forming a modified portion in the interlayer dielectric material by ion implantation. Consequently, the damaged portion may be removed with an increased removal rate while avoiding the creation of polymer contaminants when applying an etch process or avoiding over-polish time when applying a CMP process.
摘要:
In a replacement gate approach, the oxygen contents of a cap material may be increased, thereby providing more stable characteristics of the cap material itself and of the high-k dielectric material. Consequently, upon providing a work function adjusting metal species at a very advanced manufacturing stage, corresponding additional treatments may be reduced in number or may even be completely avoided, while at the same time threshold voltage variations may be reduced.
摘要:
During the formation of sophisticated gate electrode structures, a replacement gate approach may be applied in which plasma assisted etch processes may be avoided. To this end, one of the gate electrode structures may receive an intermediate etch stop liner, which may allow the replacement of the placeholder material and the adjustment of the work function in a later manufacturing stage. The intermediate etch stop liner may not negatively affect the gate patterning sequence.
摘要:
In a replacement gate approach, the sacrificial gate material is exposed on the basis of enhanced process uniformity, for instance during a wet chemical etch step or a CMP process, by forming a modified portion in the interlayer dielectric material by ion implantation. Consequently, the damaged portion may be removed with an increased removal rate while avoiding the creation of polymer contaminants when applying an etch process or avoiding over-polish time when applying a CMP process.
摘要:
In a replacement gate approach, the semiconductor material or at least a significant portion thereof in a non-transistor structure, such as a precision resistor, an electronic fuse and the like, may be preserved upon replacing the semiconductor material in the gate electrode structures. To this end, an appropriate dielectric material may be provided at least prior to the removal of the semiconductor material in the gate electrode structures, without requiring significant modifications of established replacement gate approaches.