Abstract:
In a diesel engine and exhaust aftertreatment system, a controller is arranged to control operation of the engine to obtain a first set of exhaust characteristics and to control a fuel injector to inject fuel upstream of a DPF at a first rate of injection until at least one condition is attained, and, after the at least one condition is attained, to control the fuel injector so that a rate of fuel injection is reduced and to contra! operation of the engine to obtain a second set of exhaust characteristics so that regeneration of the DPF occurs. At least one characteristic of the first and second sets of characteristics beina, different. A method for treating, diesei engine exhaust is also disclosed.
Abstract:
In a diesel engine and exhaust aftertreatment system, a controller is arranged to control operation of the engine to obtain a first set of exhaust characteristics and to control a fuel injector to inject fuel upstream of a DPF at a first rate of injection until at least one condition is attained, and, after the at least one condition is attained, to control the fuel injector so that a rate of fuel injection is reduced and to contra! operation of the engine to obtain a second set of exhaust characteristics so that regeneration of the DPF occurs. At least one characteristic of the first and second sets of characteristics beina, different. A method for treating, diesel engine exhaust is also disclosed.
Abstract:
A valve actuation system and method for use in an internal combustion engine including at least one combustion cylinder having a piston and an engine valve. The valve actuation system includes a hydraulic pump, a high-pressure reservoir, and an electro-hydraulic valve actuator. The hydraulic pump is configured to produce a hydraulic output based on a valve-piston clearance profile of at least one cylinder of the combustion engine. The high-pressure reservoir is coupled with the hydraulic pump. The electro-hydraulic valve actuator is coupled with the high-pressure reservoir via a first control valve and configured to actuate at least one engine valve of the combustion engine according to an output of the hydraulic pump.
Abstract:
An internal combustion cylinder assembly includes a cylinder having a combustion chamber and a piston. An intake valve provides a working fluid to the combustion chamber while the piston moves from a top dead center position to a bottom dead center position. A pre-combustion chamber is connected communicably to the combustion chamber via a Suder valve and conveys a portion of the working fluid to the pre-combustion chamber while the Suder valve is substantially open. The Suder valve may open substantially simultaneously with the intake valve, remain substantially open while the piston moves from the top dead center position to the bottom dead center position during an intake stroke, and close substantially while the piston is returning to the top dead center position during a compression stroke.
Abstract:
A diesel oxidation catalyst includes an inlet side, an outlet side, and at least one channel extending from the inlet side to the outlet side, the channel including a first, non-catalyzed portion extending from the inlet side to a second, catalyzed portion. A method of treating engine exhaust gas is also provided.
Abstract:
A hybrid internal combustion engine and air motor system is provided and includes at least one chamber having a drivable member and at least one intake valve and at least one exhaust valve, and a reservoir connected to the chamber through at least one of the intake valve and the exhaust valve. The system further comprises a computer configured to calculate air compressor efficiency during an air compressor mode of operation and select an intake and exhaust valve opening and closing timing sequence for maximizing air compressor efficiency and/or a computer configured to calculate air motor efficiency during an air motor mode of operation and select an intake and exhaust valve opening and closing timing sequence for maximizing air motor efficiency.
Abstract:
A method and apparatus for maintaining a diesel particulate filter (DPF) is provided. A pressure drop across the DPF is measured and an initial estimate of soot loading in the DPF is provided to a recursive filter. Using the recursive filter, the initial estimate of soot loading is updated in view of the measured pressure drop to provide an updated estimate of soot loading in the DPF. Active regeneration of the DPF is triggered when an earliest one of at least one triggering condition occurs, the updated estimate of soot loading reaching a predetermined value being one of the at least one triggering condition.
Abstract:
A hybrid internal combustion engine and air motor system is provided and includes at least one chamber having a drivable member and at least one intake valve and at least one exhaust valve, and a reservoir connected to the chamber through at least one of the intake valve and the exhaust valve. The system further comprises a computer configured to calculate air compressor efficiency during an air compressor mode of operation and select an intake and exhaust valve opening and closing timing sequence for maximizing air compressor efficiency and/or a computer configured to calculate air motor efficiency during an air motor mode of operation and select an intake and exhaust valve opening and closing timing sequence for maximizing air motor efficiency.
Abstract:
A method and engine arrangement are provided for monitoring components in an exhaust aftertreatment system (EATS) including a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and a selective catalytic reduction catalyst (SCR). A first O2 level is measured at a first location between the DOC and the DPF, a second O2 level is measured at a second location downstream of the SCR, a first NOx level is measured at, the first location, a second NOx level is measured at the second location, SCR efficiency is calculated based on the first and second NOx levels, and whether the DOC, the DPP. and the SCR are functioning property is determined based on whether the first O2 level is within a first O:2 target, whether the second O2 level is within a second O2 target, and whether SCR efficiency is within an SCR efficiency target.
Abstract:
Methods and systems for controlling reductant levels in an SCR catalyst are provided. In one aspect, reductant levels are adjusted in response to a ratio of change of NOx conversion efficiency to a change of reductant level. In another aspect, reductant injection levels are periodically adjusted to see if NOx conversion efficiency is better or worse at the adjusted levels.