Abstract:
Embodiments of the invention provide for polyurethane-based sealants. The sealants include a reaction product of a reaction system which includes at least one isocyanate, and at least one polyester polyol. The polyester polyol includes a reaction product of a polyester reaction mixture which includes one or more hydrophobic monomers, one or more organic diacids or methyl esters thereof, and one or more diols.
Abstract:
A reaction system for forming a hydrophilic polyurethane foam for liquid based cleaning applications includes a composition that has a prepolymer component and an aqueous component. The prepolymer component is a reaction product of an isocyanate component that includes diphenylemethane diisocyanate (MDI) and a polyol component that includes a polyoxyethylene-polyoxypropylene polyol that has an polyoxyethylene content greater than 65 wt %, based on a total weight of the polyoxyethylene-polyoxypropylene polyol. The aqueous component includes at least 60 wt % of water and at least 0.5 wt % of a surfactant, based on a total weight of the aqueous component. A weight ratio of the prepolymer component to the aqueous component in the composition is from 0.5:2 to 2:0.5, the composition has a cream time of less than 20 seconds and a tack free time of less than 7 minutes, and the hydrophilic polyurethane foam for liquid based cleaning applications has a wet tear strength of at least 500 N/m.
Abstract:
A method for exposing a substrate to water under superatmospheric pressure at a temperature of at least 70° C. includes (a) applying a reaction mixture to a substrate, which reaction mixture has an isocyanate index of at least 10 and includes an aromatic polyisocyanate component, a polyol component having a polyol with a hydroxyl equivalent weight of at least 500, and a catalyst component having an isocyanate trimerization catalyst, and at least partially curing the reaction mixture to form a polyisocyanurate or polyurethane-isocyanurate polymer having a glass transition temperature of at least 80° C., and (b) exposing the substrate and the polyisocyanurate or polyurethane-isocyanurate polymer to water under superatmospheric pressure at a temperature of at least 70° C.
Abstract:
A curable liquid carbon precursor formulation for preparing a porous carbon composition including (a) at least one aromatic epoxy resin; (b)(i) at least one aromatic co-reactive curing agent, or (b)(ii) at least one catalytic curing agent, or (b)(iii) a mixture thereof; and (c) at least one porogen; wherein the liquid composition has a neat viscosity of less than 10,000 mPa-s, at 25° C. prior to adding porogen, prior to adding optional components, prior to curing, and prior to carbonizing; and wherein the liquid composition being cured has a carbon yield of at least 35 weight percent disregarding the weight of the porogen and any optional components present in the composition; a process for preparing the porous carbon composition from the above formulation including the steps of curing the formulation, and carbonizing the cured product resulting from curing the formulation such that a porous carbon composition is produced; and a porous carbon composition made by the above process.
Abstract:
The present invention provides a method for preparing an aqueous polyurethane dispersion comprising a polyurethane polymer, where the method comprises the step of (A) preparing a prepolymer from a reaction mixture comprising: (1) at least one polyisocyanate compound; (2) at least one polyol; and (3) ions of at least one alkali or alkaline earth metal; followed by the step of (B) contacting the prepolymer with a chain extending agent to form the polyurethane polymer. The present invention further provides an aqueous polyurethane dispersion comprising from 30% to 40%, by weight, of solids which comprise the polyurethane polymer and being prepared by the aforesaid method. A coating composition having enhanced removability and which comprises an aqueous polyurethane dispersion prepared according to the aforesaid method is also provided.
Abstract:
A curable resin composition comprising: (1) a urethane (meth)acrylate; (2) a reactive diluent selected from the group consisting of i) a hydroxyl alkyl (meth)acrylate monomer where the acrylate group, which is attached to the carbonyl group, is attached to a hydrogen or a methyl group and the carbonyl group is attached to the hydroxyl group thru an R2 alkylene group containing 2 to 18 carbon atoms per molecule.
Abstract:
Embodiments of the invention provide for polyurethane-based sealants. The sealants include a reaction product of a reaction system which includes at least one isocyanate, and at least one polyester polyol. The polyester polyol includes a reaction product of a polyester reaction mixture which includes one or more hydrophobic monomers, one or more organic diacids or methyl esters thereof, and one or more diols.
Abstract:
Embodiments of the present disclosure are directed towards using a carbon-Michael compound. As an example, a method of using a carbon-Michael compound to reduce heat transfer can include locating the carbon-Michael compound between a heat provider and a heat receptor, where the carbon-Michael compound is a reaction product of a multifunctional acrylate compound with a multifunctional Michael donor, and the heat provider has a temperature from 100 C to 290 C.
Abstract:
A method for making joints in an electrical cable is disclosed. A first cable having polymeric insulation and a first bare conductor end and a second cable having polymeric insulation and a second bare conductor end are provided and joined create a conductor joint. A curable reaction mixture is applied over the conductor joint and cured to form a polymeric insulating sheath over the conductor joint and bonded to the polymeric insulation of each of the first and second cables. The reaction mixture includes a carbon-Michael acceptor compound, a carbon-Michael donor compound and a carbon-Michael reaction catalyst.
Abstract:
Embodiments of the present disclosure are directed towards using a carbon-Michael compound. As an example, a method of using a carbon-Michael compound to reduce heat transfer can include locating the carbon-Michael compound between a heat provider and a heat receptor, where the carbon-Michael compound is a reaction product of a multifunctional acrylate compound with a multifunctional Michael donor, and the heat provider has a temperature from 100 C to 290 C.