摘要:
A method for epitaxially forming a silicon-containing material on a substrate surface utilizes a halogen containing gas as both an etching gas as well as a carrier gas through adjustments of the process chamber temperature and pressure. It is beneficial to utilize HCl as the halogen containing gas because converting HCl from a carrier gas to an etching gas can easily be performed by adjusting the chamber pressure.
摘要:
A method for epitaxially forming a silicon-containing material on a substrate surface utilizes a halogen containing gas as both an etching gas as well as a carrier gas through adjustments of the process chamber temperature and pressure. It is beneficial to utilize HCl as the halogen containing gas because converting HCl from a carrier gas to an etching gas can easily be performed by adjusting the chamber pressure.
摘要:
An epitaxial deposition process including a dry etch process, followed by an epitaxial deposition process is disclosed. The dry etch process involves placing a substrate to be cleaned into a processing chamber to remove surface oxides. A gas mixture is introduced into a plasma cavity, and the gas mixture is energized to form a plasma of reactive gas in the plasma cavity. The reactive gas enters into the processing chamber and reacts with the substrate, forming a thin film. The substrate is heated to vaporize the thin film and expose an epitaxy surface. The epitaxy surface is substantially free of oxides. Epitaxial deposition is then used to form an epitaxial layer on the epitaxy surface.
摘要:
Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include exposing a substrate having an oxide layer thereon to an oxidizing source. The oxidizing source oxidizes an upper portion of the substrate beneath the oxide layer to form an oxide layer having an increased thickness. The oxide layer with the increased thickness is then removed to expose a clean surface of the substrate. The removal of the oxide layer generally includes removal of contaminants present in and on the oxide layer, especially those contaminants present at the interface of the oxide layer and the substrate. An epitaxial layer may then be formed on the clean surface of the substrate.
摘要:
Embodiments of the present invention generally relate to methods for removing contaminants and native oxides from substrate surfaces. The methods generally include exposing a substrate having an oxide layer thereon to an oxidizing source. The oxidizing source oxidizes an upper portion of the substrate beneath the oxide layer to form an oxide layer having an increased thickness. The oxide layer with the increased thickness is then removed to expose a clean surface of the substrate. The removal of the oxide layer generally includes removal of contaminants present in and on the oxide layer, especially those contaminants present at the interface of the oxide layer and the substrate. An epitaxial layer may then be formed on the clean surface of the substrate.
摘要:
Methods of depositing layers having reduced interfacial contamination are disclosed herein. The inventive methods may advantageously reduce contamination at the interface between deposited layers, for example, between a deposited layer and an underlying substrate or film. In some embodiments, a method of depositing a layer may include annealing a silicon-containing layer having a first layer disposed thereon in a reducing atmosphere; removing the first layer using an etching process to expose the silicon-containing layer after annealing; and depositing a second layer on the exposed silicon-containing layer.
摘要:
An epitaxial deposition process including a dry etch process, followed by an epitaxial deposition process is disclosed. The dry etch process involves placing a substrate to be cleaned into a processing chamber to remove surface oxides. A gas mixture is introduced into a plasma cavity, and the gas mixture is energized to form a plasma of reactive gas in the plasma cavity. The reactive gas enters into the processing chamber and reacts with the substrate, forming a thin film. The substrate is heated to vaporize the thin film and expose an epitaxy surface. The epitaxy surface is substantially free of oxides. Epitaxial deposition is then used to form an epitaxial layer on the epitaxy surface.
摘要:
Embodiments of the present invention generally relate to methods of forming epitaxial layers and devices having epitaxial layers. The methods generally include forming a first epitaxial layer including phosphorus and carbon on a substrate, and then forming a second epitaxial layer including phosphorus and carbon on the first epitaxial layer. The second epitaxial layer has a lower phosphorus concentration than the first epitaxial layer, which allows for selective etching of the second epitaxial layer and undesired amorphous silicon or polysilicon deposited during the depositions. The substrate is then exposed to an etchant to remove the second epitaxial layer and undesired amorphous silicon or polysilicon. The carbon present in the first and second epitaxial layers reduces phosphorus diffusion, which allows for higher phosphorus doping concentrations. The increased phosphorus concentrations reduce the resistivity of the final device. The devices include epitaxial layers having a resistivity of less than about 0.381 milliohm-centimeters.
摘要:
Embodiments of the present invention generally relate to methods for forming silicon epitaxial layers on semiconductor devices. The methods include forming a silicon epitaxial layer on a substrate at increased pressure and reduced temperature. The silicon epitaxial layer has a phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater, and is formed without the addition of carbon. A phosphorus concentration of about 1×1021 atoms per cubic centimeter or greater increases the tensile strain of the deposited layer, and thus, improves channel mobility. Since the epitaxial layer is substantially free of carbon, the epitaxial layer does not suffer from film formation and quality issues commonly associated with carbon-containing epitaxial layers.
摘要:
Methods for formation of epitaxial layers containing silicon are disclosed. Specific embodiments pertain to the formation and treatment of epitaxial layers in semiconductor devices, for example, Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices. In specific embodiments, the formation of the epitaxial layer involves exposing a substrate in a process chamber to deposition gases including two or more silicon source such as silane and a higher order silane. Embodiments include flowing dopant source such as a phosphorus dopant, during formation of the epitaxial layer, and continuing the deposition with the silicon source gas without the phosphorus dopant.