Abstract:
Fabrication methods and device structures for heterojunction bipolar transistors. A first emitter of a first heterojunction bipolar transistor and a second collector of a second heterojunction bipolar transistor are formed in a device layer of a silicon-on-insulator substrate. A first base layer of a first heterojunction bipolar transistor is epitaxially grown on the device layer with an intrinsic base portion arranged on the first emitter. A first collector of the first heterojunction bipolar transistor is epitaxially grown on the intrinsic base portion of the first base layer. A second base layer of the second heterojunction bipolar transistor is epitaxially grown on the device layer with an intrinsic base portion arranged on the second collector. A second emitter of the second heterojunction bipolar transistor is epitaxially grown on the intrinsic base portion of the second base layer. A connection is formed between the first emitter and the second collector.
Abstract:
Device structures for a field-effect transistor and methods for forming a device structure for a field-effect transistor. A first dielectric layer is formed, and a second dielectric layer are formed on the first dielectric layer. An opening is formed that extends vertically through the first and second dielectric layers. After the first opening is formed, the second dielectric layer is laterally recessed relative to the first dielectric layer with a selective etching process, which widens a portion of the opening extending vertically through the second dielectric layer relative to a portion of the opening extending vertically through the first dielectric layer. After the second dielectric layer is laterally recessed, a gate electrode is formed that includes a narrow section in the portion of the opening extending vertically through the first dielectric layer and a wide section in the portion of the opening extending vertically through the second dielectric layer.
Abstract:
Device structures for a field-effect transistor and methods of forming a device structure for a field-effect transistor. A trench isolation region is formed in a substrate, and surrounds a semiconductor body. An undercut cavity region is also formed in the substrate. The undercut cavity region extends laterally beneath the semiconductor body and defines a body pedestal as a section of the substrate that is arranged in vertical alignment with the semiconductor body.
Abstract:
Device structures and fabrication methods for a bipolar junction transistor. A first semiconductor layer is formed on a substrate containing a first terminal. An etch stop layer is formed on the first semiconductor layer, and a second semiconductor layer is formed on the etch stop layer. The second semiconductor layer is etched to define a second terminal at a location of an etch mask on the second semiconductor layer. A first material comprising the etch stop layer and a second material comprising the second semiconductor layer are selected such that the second material of the second semiconductor layer etches at a greater etch rate than the first material of the etch stop layer. The first semiconductor layer may be a base layer that is used to form an intrinsic base and an extrinsic base of the bipolar junction transistor.
Abstract:
Chip packages and methods of forming a chip package. The chip package includes a power amplifier and a thermal pathway structure configured to influence transport of heat energy. The power amplifier includes a first emitter finger and a second emitter finger having at least one parameter that is selected based upon proximity to the thermal pathway structure.
Abstract:
A semiconductor device may include a transistor gate in a device layer; an interconnect layer over the device layer; and an air gap extending through the interconnect layer to contact an upper surface of the transistor gate. The air gap provides a mechanism to reduce both on-resistance and off-capacitance for applications using SOI substrates such as radio frequency switches.
Abstract:
Fabrication methods and device structures for bipolar junction transistors and heterojunction bipolar transistors. A first dielectric layer is formed and a second dielectric layer is formed on the first dielectric layer. An opening is etched extending vertically through the first dielectric layer and the second dielectric layer. A collector is formed inside the opening. An intrinsic base, which is also formed inside the opening, has a vertical arrangement relative to the collector.
Abstract:
Device structures for a bipolar junction transistor and methods for fabricating a device structure using a substrate. One or more primary trench isolation regions are formed that surround an active device region of the substrate and a collector contact region of the substrate. A base layer is formed on the active device region and the collector contact region, and the active device region includes a collector. Each primary trench isolation region extends vertically to a first depth into the substrate. A trench is formed laterally located between the base layer and the collector contact region and that extends vertically through the base layer and into the substrate to a second depth that is less than the first depth. A dielectric is formed in the trench to form a secondary trench isolation region. An emitter is formed on the base layer.
Abstract:
Device structures for a bipolar junction transistor and methods of fabricating a device structure for a bipolar junction transistor. A base layer comprised of a first semiconductor material is formed. An emitter layer comprised of a second semiconductor material is formed on the base layer. The emitter layer is patterned to form an emitter finger having a length and a width that changes along the length of the emitter finger.
Abstract:
Various methods include: forming an optical waveguide in a bulk silicon layer, the optical waveguide including a set of shallow trench isolation (STI) regions overlying a silicon substrate region; ion implanting the silicon substrate to amorphize a portion of the silicon substrate; forming a set of trenches through the STI regions and into the underlying silicon substrate region; undercut etching the silicon substrate region under the STI regions through the set of trenches to form a set of cavities, wherein the at least partially amorphized portion of the silicon substrate etches at a rate less than an etch rate of the silicon substrate; and sealing the set of cavities.