摘要:
According to one embodiment, a pulse wave velocity measuring device includes a first sensor, a second sensor, a base body and a calculation unit. The first sensor is configured to sense a pulse wave propagating through an interior of a vessel. The second sensor is separated from the first sensor and is configured to sense the pulse wave. The base body is configured to hold the first sensor and the second sensor and regulate a distance between the first sensor and the second sensor. The calculation unit is configured to derive a difference between a time of the sensing of the pulse wave by the first sensor and a time of the sensing of the pulse wave by the second sensor.
摘要:
According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
摘要:
According to one embodiment, a pressure sensor includes a base, and a first sensor unit. The first sensor unit includes a first transducer thin film, a first strain sensing device and a second strain sensing device. The first strain sensing device includes a first magnetic layer, a second magnetic layer, and a first intermediate layer provided between the first and the second magnetic layers. The second strain sensing device is provided apart from the first strain sensing device on the first membrane surface and provided at a location different from a location of the barycenter, the second strain sensing device including a third magnetic layer, a fourth magnetic layer, and a second intermediate layer provided between the third and the fourth magnetic layers, the first and the second intermediate layers being nonmagnetic. The first and the second strain sensing devices, and the barycenter are in a straight line.
摘要:
According to one embodiment, a magneto-resistive effect device, includes a stacked body stacked on a substrate, a pair of first electrodes that feeds current to the stacked body, a strain introduction member, and a second electrode for applying a voltage to the strain introduction member. The stacked body includes a first magnetic layer that includes one or more metals selected from the group consisting of iron, cobalt, and nickel, a second magnetic layer stacked on the first magnetic layer, having a composition that is different from the first magnetic layer, and a spacer layer disposed between the first magnetic layer and the second magnetic layer.
摘要:
According to one embodiment, a touch panel includes first interconnections, second interconnections, sensor units and a control unit. The first interconnections are arranged along a first direction, and extend along a second direction intersecting with the first direction. The second interconnections are arranged along a third direction intersecting with the first direction, and extend along a fourth direction intersecting with the third direction. The sensor units are provided in intersection portions of the first and second interconnections, include first and second ferromagnetic layers, and an intermediate layer, allow a current to be passed, and have one end connected to the first interconnections and another end connected to the second interconnections. The control unit is connected to the first and second interconnections. An electric resistance of the sensor units changes in accordance with a stress applied. The control unit senses a change in the electric resistance.
摘要:
According to one embodiment, a magneto-resistance effect element includes: a first electrode; a second electrode; a first magnetic layer provided between the first and the second electrodes; a second magnetic layer provided between the first magnetic layer and the second electrode; and an oxide layer of a metal oxide provided between the first magnetic layer and the second magnetic layer. The oxide layer includes wustite crystal grains of a wustite structure with a (1 1 1) plane orientation containing iron. A lattice spacing of a (1 1 1) plane of the wustite crystal grains is not less than 0.253 nanometers and not more than 0.275 nanometers.
摘要:
According to one embodiment, a touch panel includes first interconnections, second interconnections, sensor units and a control unit. The first interconnections are arranged along a first direction, and extend along a second direction intersecting with the first direction. The second interconnections are arranged along a third direction intersecting with the first direction, and extend along a fourth direction intersecting with the third direction. The sensor units are provided in intersection portions of the first and second interconnections, include first and second ferromagnetic layers, and an intermediate layer, allow a current to be passed, and have one end connected to the first interconnections and another end connected to the second interconnections. The control unit is connected to the first and second interconnections. An electric resistance of the sensor units changes in accordance with a stress applied. The control unit senses a change in the electric resistance.
摘要:
A method for manufacturing a magneto-resistance effect element is provided. The magneto-resistance effect element includes a first magnetic layer including a ferromagnetic material, a second magnetic layer including a ferromagnetic material and a spacer layer provided between the first magnetic layer and the second magnetic layer, the spacer layer having an insulating layer and a conductive portion penetrating through the insulating layer. The method includes: forming a film to be a base material of the spacer layer; performing a first treatment using a gas including at least one of oxygen molecules, oxygen atoms, oxygen ions, oxygen plasma and oxygen radicals on the film; and performing a second treatment using a gas including at least one of nitrogen ions, nitrogen atoms, nitrogen plasma, and nitrogen radicals on the film submitted to the first treatment.
摘要:
A blood-pressure sensor includes a substrate, a first electrode, a magnetization fixed layer, a nonmagnetic layer, a magnetization free layer, and a second electrode. The substrate is bent to generate a tensile stress at least in a first direction. The first electrode is provided on the substrate. The magnetization fixed layer has magnetization to be fixed in a second direction, and is provided on the substrate. The nonmagnetic layer is provided on the magnetization fixed layer. The magnetization free layer has a magnetization direction which is different from the first direction and from a direction perpendicular to the first direction. The second electrode is provided on the magnetization free layer.
摘要:
According to one embodiment, a magneto-resistance effect element includes: a first electrode; a second electrode; a first magnetic layer provided between the first and the second electrodes; a second magnetic layer provided between the first magnetic layer and the second electrode; and an oxide layer of a metal oxide provided between the first magnetic layer and the second magnetic layer. The oxide layer includes wustite crystal grains of a wustite structure with a (1 1 1) plane orientation containing iron. A lattice spacing of a (1 1 1) plane of the wustite crystal grains is not less than 0.253 nanometers and not more than 0.275 nanometers.