Abstract:
A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction. An interconnect comprising an interconnect substrate having a plurality of electrically isolated conductive traces extending in the x-direction on a first surface of the interconnect substrate may be attached to the at least one first microelectronic device connection structure row and the at least one second microelectronic device connection structure row, such that at least one interconnect conductive trace forms a connection between a first microelectronic device connection structure and its corresponding second microelectronic device connection structure.
Abstract:
Apparatuses, processes, and systems related to an interconnect with an increased z-height and decreased reflow temperature are described herein. In embodiments, an interconnect may include a solder ball and a solder paste to couple the solder ball to a substrate. The solder ball and/or solder paste may be comprised of an alloy with a relatively low melting point and an alloy with a relatively high melting point.
Abstract:
A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction. An interconnect comprising an interconnect substrate having a plurality of electrically isolated conductive traces extending in the x-direction on a first surface of the interconnect substrate may be attached to the at least one first microelectronic device connection structure row and the at least one second microelectronic device connection structure row, such that at least one interconnect conductive trace forms a connection between a first microelectronic device connection structure and its corresponding second microelectronic device connection structure.
Abstract:
An integrated circuit (IC) package stack with a first and second substrate interconnected by solder further includes solder resist openings (SRO) of mixed lateral dimension are spatially varied across an area of the substrates. In embodiments, SRO dimension is varied between at least two different diameters as a function of an estimated gap between the substrates that is dependent on location within the substrate area. In embodiments where deflection in at least one substrate reduces conformality between the substrates, a varying solder joint height is provided from a fixed volume of solder by reducing the lateral dimensioning of the SRO in regions of larger gap relative to SRO dimensions in regions of smaller gap. In embodiments, the first substrate may be any of an IC chip, package substrate, or interposer while the second substrate may be any of another IC chip, package substrate, interposer, or printed circuit board (PCB).
Abstract:
A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction. An interconnect comprising an interconnect substrate having a plurality of electrically isolated conductive traces extending in the x-direction on a first surface of the interconnect substrate may be attached to the at least one first microelectronic device connection structure row and the at least one second microelectronic device connection structure row, such that at least one interconnect conductive trace forms a connection between a first microelectronic device connection structure and its corresponding second microelectronic device connection structure.
Abstract:
A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction. An interconnect comprising an interconnect substrate having a plurality of electrically isolated conductive traces extending in the x-direction on a first surface of the interconnect substrate may be attached to the at least one first microelectronic device connection structure row and the at least one second microelectronic device connection structure row, such that at least one interconnect conductive trace forms a connection between a first microelectronic device connection structure and its corresponding second microelectronic device connection structure.
Abstract:
An integrated circuit (IC) package stack with a first and second substrate interconnected by solder further includes solder resist openings (SRO) of mixed lateral dimension are spatially varied across an area of the substrates. In embodiments, SRO dimension is varied between at least two different diameters as a function of an estimated gap between the substrates that is dependent on location within the substrate area. In embodiments where deflection in at least one substrate reduces conformality between the substrates, a varying solder joint height is provided from a fixed volume of solder by reducing the lateral dimensioning of the SRO in regions of larger gap relative to SRO dimensions in regions of smaller gap. In embodiments, the first substrate may be any of an IC chip, package substrate, or interposer while the second substrate may be any of another IC chip, package substrate, interposer, or printed circuit board (PCB).