Abstract:
The present disclosure includes a battery module having a housing with a cell receptacle region defined by walls of the housing and configured to enable passage of electrochemical cells therethrough. The battery module also includes a bus bar carrier sealed in the cell receptacle region. The bus bar carrier includes a perimeter having flexible ribs extending along at least a majority of the perimeter and configured to enable intimate contact between the walls of the housing and the perimeter of the bus bar carrier.
Abstract:
The present disclosure relates to washers for lithium ion battery cell terminals. A lithium ion battery module includes a housing, a first battery cell disposed in the housing and having a cell terminal protruding from a surface of a casing of the first battery cell, where the cell terminal is configured to enable electrical connection to the battery cell, and a washer stack disposed about the cell terminal. The washer stack has an electrically insulative washer and an electrically conductive washer. The electrically conductive washer is disposed adjacent to the electrically insulative washer such that the electrically insulative washer is positioned between the electrically conductive washer and the surface of the casing, and the electrically conductive washer is configured to enable electrical connection to the cell terminal.
Abstract:
The present disclosure relates generally to a battery module having a housing and a stack of battery cells disposed in the housing. Each battery cell has a battery cell terminal and a battery cell vent on an end of each battery cell, and the battery cell vent is configured to exhaust effluent into the housing. The battery module has a vent shield plate disposed in the housing and directly along an immediate vent path of the effluent, a first surface of the vent shield plate configured to direct the effluent to an opening between the shield plate and the housing, and a second surface of the vent shield plate opposite the first surface. The battery module also has a venting chamber coupled to the opening and at least partially defined by the second surface and a vent configured to direct the effluent out of the battery module.
Abstract:
The present disclosure relates to a battery module having a housing and a stack of battery cells disposed in a receptacle area of the housing, where each battery cell has a top having a battery cell terminal and a bottom, where the top of the battery cells face outwardly away from the receptacle area. The battery module includes an integrated sensing and bus bar subassembly positioned against the stack of battery cells and has a carrier, a bus bar integrated onto the carrier, and a biasing member integrated onto the carrier. The bus bar electrically couples battery cells in an electrical arrangement, and the biasing member is between the top of each battery cell and the carrier, where the biasing member has a first material, more compliant than a second material of the carrier, and the biasing member biases the stack of battery cells inwardly toward the housing.
Abstract:
The present disclosure relates generally to a battery module having a housing and a stack of battery cells disposed in the housing. Each battery cell has a battery cell terminal and a battery cell vent on an end of each battery cell, and the battery cell vent is configured to exhaust effluent into the housing. The battery module has a vent shield plate disposed in the housing and directly along an immediate vent path of the effluent, a first surface of the vent shield plate configured to direct the effluent to an opening between the shield plate and the housing, and a second surface of the vent shield plate opposite the first surface. The battery module also has a venting chamber coupled to the opening and at least partially defined by the second surface and a vent configured to direct the effluent out of the battery module.
Abstract:
The present disclosure includes a battery module having a housing with a first end (having a cell receptacle region) and a second end opposite to the first end. The battery module includes a stack of electrochemical cells inserted through the cell receptacle region of the housing, disposed between the first end and the second end of the housing, and having terminal ends of all the electrochemical cells of the stack aligned in a planar area. The battery module includes a bus bar carrier disposed over the stack of electrochemical cells and within the cell receptacle region of the housing. The bus bar carrier includes bus bars disposed thereon that interface with the terminal ends. The battery module includes a layer of thermal epoxy disposed between the second end of the housing and a bottom side of the stack of electrochemical cells.
Abstract:
The present disclosure relates to a battery module having a housing with a first cover and a second cover. The battery module includes a plurality of lithium-ion (Li-ion) electrochemical cells disposed in the housing adjacent to the second cover. The battery module also includes a reinforcement column disposed within the housing that extends along a direction from the second cover to the first cover. The reinforcement column is positioned against the first cover and is coupled to a feature between the first and second covers, and the reinforcement column is configured to enhance a load bearing capacity of the battery module.
Abstract:
The present disclosure relates to a battery module having a housing and a stack of battery cells disposed in a receptacle area of the housing, where each battery cell has a top having a battery cell terminal and a bottom, where the top of the battery cells face outwardly away from the receptacle area. The battery module includes an integrated sensing and bus bar subassembly positioned against the stack of battery cells and has a carrier, a bus bar integrated onto the carrier, and a biasing member integrated onto the carrier. The bus bar electrically couples battery cells in an electrical arrangement, and the biasing member is between the top of each battery cell and the carrier, where the biasing member has a first material, more compliant than a second material of the carrier, and the biasing member biases the stack of battery cells inwardly toward the housing.
Abstract:
The present disclosure includes a battery module having a housing with a cell receptacle region defined by walls of the housing and configured to enable passage of electrochemical cells therethrough. The battery module also includes a bus bar carrier sealed in the cell receptacle region. The bus bar carrier includes a perimeter having flexible ribs extending along at least a majority of the perimeter and configured to enable intimate contact between the walls of the housing and the perimeter of the bus bar carrier.