摘要:
The invention is based on a method for coating at least one wiper blade element (10) made of an elastomer material, in which first, the surface of the wiper blade element (10) is cleaned and activated by means of a plasma, and then in a CVD process, a coating material is brought into a plasma state and at least one protective coating (64) forms on the surface of the wiper blade element (10), where a high-frequency voltage is applied to the region of the wiper blade element (10) oriented away from the protective layer (64) by means of an electrode (56). The invention proposes that before being brought into a treatment chamber (32, 34, 36, 38, 40, 74), the wiper blade element (10) be cut to a useful length (66) from a profiled band and placed on an electrode plate (56) so that its wiper lip (18) stands approximately perpendicular to the electrode plate (56), which extends to both sides of the wiper blade element (10), and is subjected to a plasma flow (50).
摘要:
A pump piston and/or elements sealing the pump piston, in particular a sealing ring of elastomeric material with an additionally applied coating are/is proposed. To improve the durability characteristics, the pump piston and/or the elements sealing the pump piston have a coating which is formed at least predominantly of halogen-, silicon-, carbon-containing and/or metal-organic monomers. Furthermore, a device and a method for coating an object of elastomeric material utilizing a plasma are proposed.
摘要:
A pump piston and/or elements sealing the pump piston, in particular a sealing ring of elastomeric material with an additionally applied coating are/is proposed. To improve the durability characteristics, the pump piston and/or the elements sealing the pump piston have a coating which is formed at least predominantly of halogen-, silicon-, carbon-containing and/or metal-organic monomers. Furthermore, a device and a method for coating an object of elastomeric material utilizing a plasma are proposed.
摘要:
A method and device for sterilizing containers in which a plasma treatment is executed through excitation of an electromagnetic oscillation so that the plasma is excited in a vacuum in the vicinity of the container regions to be sterilized. Between arrival and discharge, the container regions to be sterilized are moved closer to the oscillation-generating device in the chamber, with continuous movement of the container and/or of the oscillation-generating device for one or more predetermined time intervals in such a way that a plasma is excited in these regions inside and/or outside the container. The chamber is provided with a transport apparatus inside it, which produces an essentially rotating motion of the container during the transport from the arrival to the discharge in the chamber.
摘要:
A method and device for sterilizing containers in which a plasma treatment is executed through excitation of an electromagnetic oscillation so that the plasma is excited in a vacuum in the vicinity of the container regions to be sterilized. Between arrival and discharge, the container regions to be sterilized are moved closer to the oscillation-generating device in the chamber, with continuous movement of the container and/or of the oscillation-generating device for one or more predetermined time intervals in such a way that a plasma is excited in these regions inside and/or outside the container. The chamber is provided with a transport apparatus inside it, which produces an essentially rotating motion of the container during the transport from the arrival to the discharge in the chamber.
摘要:
A method is proposed for vacuum-coating a substrate using a plasma-CVD method. In order to control ion bombardment during the vacuum coating, a substrate voltage, produced independently from a coating plasma, is applied to the substrate. The substrate voltage is modified during the coating. The substrate voltage is a direct voltage that is pulsed in bipolar fashion with a frequency of 0.1 kHz to 10 MHz. A wear-resistant and friction-reducing multilayer structure of alternating hard material individual layers and carbon or silicon individual layers is proposed.
摘要:
A method is proposed for vacuum-coating a substrate using a plasma-CVD method. In order to control ion bombardment during the vacuum coating, a substrate voltage, produced independently from a coating plasma, is applied to the substrate. The substrate voltage is modified during the coating. The substrate voltage is a direct voltage that is pulsed in bipolar fashion with a frequency of 0.1 kHz to 10 MHz. A wear-resistant and friction-reducing multilayer structure of alternating hard material individual layers and carbon or silicon individual layers is proposed.
摘要:
A method is proposed for vacuum-coating a substrate using a plasma-CVD method. In order to control ion bombardment during the vacuum coating, a substrate voltage, produced independently from a coating plasma, is applied to the substrate. The substrate voltage is modified during the coating. The substrate voltage is a direct voltage that is pulsed in bipolar fashion with a frequency of 0.1 kHz to 10 MHz. A wear-resistant and friction-reducing multilayer structure of alternating hard material individual layers and carbon or silicon individual layers is proposed.
摘要:
A method is proposed for vacuum-coating a substrate using a plasma-CVD method. In order to control ion bombardment during the vacuum coating, a substrate voltage produced independently from a coating plasma is applied to the substrate. The substrate voltage is modified during the coating. The substrate voltage is a direct voltage that is pulsed in bipolar fashion with a frequency of 0.1 kHz to 10 MHz. A wear-resistant and friction-reducing multilayer structure of alternating hard material individual layers and carbon or silicon individual layers is proposed.
摘要:
A method of making a temperature dependent resistor probe for measuring temperature or mass of a flowing medium includes (a) preparation of a support plate of a metallic material; (b) applying a support foil of a temperature resistant plastic material on one side of the support plate; (c) applying a layer of temperature dependent resistive material on the support foil and finishing the resistive layer into a measuring resistor layer; and thereafter, an opening is formed in the support plate in the area below the measuring resistor layer.