Abstract:
Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
Abstract:
Some embodiments include a string of charge storage devices formed along a vertical channel of semiconductor material; a gate region of a drain select gate (SGD) transistor, the gate region at least partially surrounding the vertical channel; a dielectric barrier formed in the gate region; a first isolation layer formed above the gate region and the dielectric barrier; a drain region of the SGD transistor formed above the vertical channel; and a second isolation layer formed above the first isolation layer and the drain region, wherein the second isolation layer includes a conductive contact in electrical contact with the drain region of the SGD transistor. Additional apparatus and methods are disclosed.
Abstract:
An embodiment includes forming an isolation region between first and second active regions in a semiconductor, forming an opening between the first and second active regions by removing a portion of the isolation region, and forming a dielectric plug within the opening so that the dielectric plug is between the first and second active regions and so that a portion of the dielectric plug extends below upper surfaces of the first and second active regions. The dielectric plug may be formed of a dielectric material having a lower removal rate than a dielectric material of the isolation region for a particular isotropic removal chemistry.
Abstract:
Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
Abstract:
Some embodiments include a semiconductor device having a stack structure including a source comprising polysilicon, an etch stop of oxide on the source, a select gate source on the etch stop, a charge storage structure over the select gate source, and a select gate drain over the charge storage structure. The semiconductor device may further include an opening extending vertically into the stack structure to a level adjacent to the source. A channel comprising polysilicon may be formed on a side surface and a bottom surface of the opening. The channel may contact the source at a lower portion of the opening, and may be laterally separated from the charge storage structure by a tunnel oxide. A width of the channel adjacent to the select gate source is greater than a width of the channel adjacent to the select gate drain.
Abstract:
An embodiment includes forming an isolation region between first and second active regions in a semiconductor, forming an opening between the first and second active regions by removing a portion of the isolation region, and forming a dielectric plug within the opening so that the dielectric plug is between the first and second active regions and so that a portion of the dielectric plug extends below upper surfaces of the first and second active regions. The dielectric plug may be formed of a dielectric material having a lower removal rate than a dielectric material of the isolation region for a particular isotropic removal chemistry.
Abstract:
There is provided fin methods for fabricating fin structures. More specifically, fin structures are formed in a substrate. The fin structures may include two fins separated by a channel, wherein the fins may be employed as fins of a field effect transistor. The fin structures are formed below the upper surface of the substrate, and may be formed without utilizing a photolithographic mask to etch the fins.
Abstract:
Some embodiments include a semiconductor device having a stack structure including a plurality of alternating tiers of dielectric material and poly-silicon formed on a substrate. Such a semiconductor device may further include at least one opening having a high aspect ratio and extending into the stack structure to a level adjacent the substrate, a first poly-silicon channel formed in a lower portion of the opening adjacent the substrate, a second poly-silicon channel formed in an upper portion of the opening, and WSiX material disposed between the first poly-silicon channel and the second poly-silicon channel in the opening. The WSiX material is adjacent to the substrate, and can be used as an etch-landing layer and a conductive contact to contact both the first poly-silicon channel and the second poly-silicon channel in the opening. Other embodiments include methods of making semiconductor devices.
Abstract:
A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.
Abstract:
In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.