Abstract:
Control logic in a memory device causes a pass voltage to be applied to a plurality of wordlines of a block of a memory array of the memory device, the block comprising a plurality of sub-blocks, and the pass voltage to boost a channel potential of each of the plurality of sub-blocks to a boost voltage. The control logic further selectively discharges the boost voltage from one or more of the plurality of sub-blocks according to a data pattern representing a sequence of bits to be programmed to respective memory cells of the plurality of sub-blocks. In addition, the control logic causes a single programming pulse to be applied to a selected wordline of the plurality of wordlines of the block to program the respective memory cells of the plurality of sub-blocks according to the data pattern.
Abstract:
Apparatus might include an array of memory cells and a controller for access of the array of memory cells. The controller might be configured to cause the apparatus to apply a sense voltage level to a control gate of a memory cell of the array of memory cells, generate N determinations whether the memory cell is deemed to activate or deactivate while applying the sense voltage level, wherein N is an integer value greater than or equal to three, deem the memory cell to have a threshold voltage in a first range of threshold voltages lower than the sense voltage level in response to a majority of the N determinations indicating activation of the memory cell, and deem the memory cell to have a threshold voltage in a second range of threshold voltages higher than the sense voltage level in response to a majority of the N determinations indicating activation of the memory cell.
Abstract:
Memory devices and methods facilitate handling of data received by a memory device through the use of data grouping and assignment of data validity status values to grouped data. For example, data is received and delineated into one or more data groups and a data validity status is associated with each data group. Data groups having a valid status are latched into one or more cache registers for storage in an array of memory cells wherein data groups comprising an invalid status are rejected by the one or more cache registers.
Abstract:
A memory device includes a memory array includes memory cells grouped into one or more address ranges. Control logic is coupled to the memory array and configured to detect one or more errors associated with one or more stored data items corresponding to a first address range of one or more address ranges. The control logic can determine that a number of the one or more stored data items exceeds a number of redundant memory locations for the first address space. Control logic can remap an association of a first memory address of at least one of the stored data items from a first address within the first address space to a second address in a second address range, where the second address range includes one or more available redundant memory locations.
Abstract:
Some embodiments include an apparatus having semiconductor pillars in a substantially hexagonally closest packed arrangement. The hexagonally closest packed arrangement includes a repeating pillar pattern which has at least portions of 7 different pillars. Each of the different pillars in a respective one of the repeating pillar patterns is capable of being electrically coupled to a different data line of a plurality of data lines. Some embodiments include an apparatus having semiconductor pillars in a substantially hexagonally closest packed arrangement. The hexagonally closest packed arrangement includes a repeating pillar pattern having at least portions of 7 different pillars. All 7 different pillars of a repeating pillar pattern are encompassed by a single drain-side select gate (SGD).
Abstract:
Some embodiments include an apparatus having semiconductor pillars in a substantially hexagonally closest packed arrangement. The hexagonally closest packed arrangement includes a repeating pillar pattern which has at least portions of 7 different pillars. Each of the different pillars in a respective one of the repeating pillar patterns is capable of being electrically coupled to a different data line of a plurality of data lines. Some embodiments include an apparatus having semiconductor pillars in a substantially hexagonally closest packed arrangement. The hexagonally closest packed arrangement includes a repeating pillar pattern having at least portions of 7 different pillars. All 7 different pillars of a repeating pillar pattern are encompassed by a single drain-side select gate (SGD).
Abstract:
Apparatus might include an array of memory cells and a controller for access of the array of memory cells. The controller might be configured to cause the apparatus to apply a sense voltage level to a control gate of a memory cell of the array of memory cells, generate N determinations whether the memory cell is deemed to activate or deactivate while applying the sense voltage level, wherein N is an integer value greater than or equal to three, deem the memory cell to have a threshold voltage in a first range of threshold voltages lower than the sense voltage level in response to a majority of the N determinations indicating activation of the memory cell, and deem the memory cell to have a threshold voltage in a second range of threshold voltages higher than the sense voltage level in response to a majority of the N determinations indicating activation of the memory cell.
Abstract:
Apparatus and methods to vary, in response to temperature, a precharge voltage level of a sense node during a sense operation, a sense node develop time during the sense operation, and/or a ratio of a deboost voltage level capacitively decoupled from the sense node to a boost voltage level capacitively coupled to the sense node during the sense operation.
Abstract:
Some embodiments include an apparatus having semiconductor pillars in a substantially hexagonally closest packed arrangement. The hexagonally closest packed arrangement includes a repeating pillar pattern which has at least portions of 7 different pillars. Each of the different pillars in a respective one of the repeating pillar patterns is capable of being electrically coupled to a different data line of a plurality of data lines. Some embodiments include an apparatus having semiconductor pillars in a substantially hexagonally closest packed arrangement. The hexagonally closest packed arrangement includes a repeating pillar pattern having at least portions of 7 different pillars. All 7 different pillars of a repeating pillar pattern are encompassed by a single drain-side select gate (SGD).
Abstract:
Memory devices and methods facilitate handling of data received by a memory device through the use of data grouping and assignment of data validity status values to grouped data. For example, data is received and delineated into one or more data groups and a data validity status is associated with each data group. Data groups having a valid status are latched into one or more cache registers for storage in an array of memory cells wherein data groups comprising an invalid status are rejected by the one or more cache registers.