Abstract:
A memory device for artificial intelligence calculation includes a memory structure, a controller chip, and a processer chip. The memory structure includes a first memory chip, and a stack of second memory chips, in which a memory density of each of the second memory chips is greater than a memory density of the first memory chip. The controller chip is electrically connected to the first memory chip and the second memory chips. The processer chip is electrically connected to the controller chip.
Abstract:
A method for generating a classification model using a training data set. An iterative procedure for training an ANN model, in which an iteration includes selecting a small sample of training data from a source of training data, training the model using the sample, using the model in inference mode over a larger sample of the training data, and reviewing the results of the inferencing. The results can be evaluated to determine whether the model is satisfactory, and if it does not meet specified criteria, then cycles of sampling, training, inferencing and reviewing results (STIR cycles) are repeated in an iterative process until the criteria are met. A classification engine trained as described herein is provided.
Abstract:
A memory device includes a periphery wafer, a memory array chip stack, and a plurality of first conductive contacts. The periphery wafer has a functional surface. The memory array chip stack is disposed on the periphery wafer and has a functional surface, in which the functional surface of the periphery wafer faces toward the functional surface of the memory array chip stack, and a first side of the memory array chip stack is in a staircase configuration. The first conductive contacts are on the first side of the memory array chip stack, and between and interconnecting the functional surface of the periphery wafer and the functional surface of the memory array chip stack.
Abstract:
A memory structure is provided. The memory structure comprises M array regions and N contact regions. M is an integer ≥2. N is an integer ≥M. Each array region is coupled to at least one contact region. Each contact region comprises a stair structure and a plurality of contacts. The stair structure comprises alternately stacked conductive layers and insulating layers. Each contact is connected to one conductive layer of the stair structure. Two array regions which are adjacent to each other are spatially separated by two contact regions, which are coupled to the two array regions, respectively.
Abstract:
A memory structure is provided. The memory structure includes a first chip. The first chip has an array region and a periphery region. The first chip includes a first stack and a plurality of through structures. The first stack is disposed in the periphery region. The first stack includes alternately stacked conductive layers and insulating layers. The through structures each include an opening, a dielectric layer and a channel material. The opening is through the first stack. The dielectric layer is disposed on a sidewall of the opening. The channel material is disposed in the opening, and the channel material covers the dielectric layer.
Abstract:
A connector structure for electrically contacting with a conductive layer disposed on a substrate is provided. The connector structure comprises a conductive connecting element disposed on the substrate. The conductive connecting element comprises a connecting part and an extending part. The connecting part has a bottom portion electrically contacting with the conductive layer. The extending part laterally extends outwards from a top portion of the connecting part, and the extending part and the connecting part are respectively formed of different materials.
Abstract:
A semiconductor package structure and a method for manufacturing the same are provided. The semiconductor package structure comprises a substrate, a first chip, a first dielectric layer, a dielectric encapsulation layer and at least one first via. The first chip is disposed on the substrate. The first chip has a first landing area. The first dielectric layer is disposed on the first chip. The dielectric encapsulation layer encapsulates the first chip and the first dielectric layer. The at least one first via penetrates through the dielectric encapsulation layer and the first dielectric layer. The at least one first via connects to the first landing area of the first chip.
Abstract:
A memory structure includes N array regions and N page buffers coupled to the N array regions, respectively. N is an integer ≧2. Each of the N array regions includes a 3D array of a plurality of memory cells. The memory cells have a lateral distance d between two adjacent memory cells on a horizontal cell plane of the 3D array. Each of the N array regions further includes a plurality of conductive lines. The conductive lines are disposed over and coupled to the 3D array. The conductive lines have a pitch p, and p/d=⅕ to ½. The N array regions and the N page buffers are arranged on one line along an extension direction of the conductive lines.
Abstract:
A memory structure is provided. The memory structure includes a substrate, an array portion disposed on the substrate, a periphery portion disposed on the array portion, and a plurality of contacts connecting the array portion to the periphery portion.
Abstract:
A three-dimensional (3D) semiconductor device is provided, comprising a substrate having a staircase region comprising N steps, wherein N is an integer one or greater; a stack having multi-layers on the substrate, and the multi-layers comprising active layers alternating with insulating layers on the substrate, the stack comprising a plurality of sub-stacks formed on the substrate and the sub-stacks disposed in relation to the N steps to form respective contact regions; and a plurality of connectors formed in the respective contact regions, and the connectors extending downwardly to connect a bottom layer under the multi-layers.