摘要:
An aluminum fill process for sub-0.25 .mu.m technology integrated circuits that has a reflow temperature less than 400.degree. C. that has low alloy resistivity and excellent electromigration characteristics. The aluminum allow is composed of Al-1% Ge-1% Cu.
摘要:
The present invention relates to the formation of a protective intermetallic layer 15 on the surface of damascene metal interconnects 12 during semiconductor fabrication. The intermetallic layer 15 prevents problems associated with formation of an oxide layer on the surface of the interconnect. The intermetallic layer is formed by depositing a metal on the surface of the interconnect that will both reduce any present metal oxide layer and form an intermetallic with the interconnect metal.
摘要:
High integrity ultra-shallow source/drain junctions are formed employing cobalt silicide contacts. Field oxide regions, gates, spacers, and source/drain implants are initially formed. A layer of silicon is then deposited. A protective non-contuctive film is then formed and anisotropically etched to expose the silicon layer on the source/drain regions and the top surfaces of the gates, and to form protective spacers on the edges of the field oxide regions and on the side surfaces of the gates. A layer of cobalt is thereafter deposited and silicidation is performed, as by rapid thermal annealing, to form a low-resistance cobalt silicide while consuming the silicon film. The consumption of the silicon film during silicidation results in less consumption of substrate silicon, thereby enabling the formation of ultra-shallow source/drain junctions without junction leakage, allowing the formation of cobalt silicide contacts at optimum thickness and facilitating reliable device scaling.
摘要:
A method of forming a contact through a material includes forming a via through a dielectric material and cleaning the via using a dilute hydrofluoric (DHF) acid solution. The method further includes depositing a barrier layer within the via and depositing metal adjacent the barrier layer.
摘要:
A semiconductor component having a composite via structure with an enhanced aspect ratio and a method for manufacturing the semiconductor component. Vias having a first aspect ratio are formed in a contact layer disposed on a semiconductor substrate and filled with a metal. The metal is planarized and a dielectric layer is formed over the contact layer. Via extension structures having the same aspect ratio as those in the contact layer are formed in the dielectric layer and aligned with the vias in the contact layer. The vias in the dielectric layer are filled with metal and the metal is planarized. The contact vias in the contact layer and the dielectric layer cooperate to form a composite via structure having the enhanced aspect ratio. Additional dielectric layers having via structures can be included in the composite contact structure to further enhance the aspect ratio of the via structure.
摘要:
A memory device having a metal nanocrystal charge storage structure and a method for its manufacture. The memory device may be manufactured by forming a first oxide layer on the semiconductor substrate, then disposing a porous dielectric layer on the oxide layer and disposing a second oxide layer on the porous dielectric layer. A layer of electrically conductive material is formed on the second layer of dielectric material. An etch mask is formed on the electrically conductive material. The electrically conductive material and the underlying dielectric layers are anisotropically etched to form a dielectric structure on which a gate electrode is disposed. A metal layer is formed on the dielectric structure and the gate electrode and treated so that portions of the metal layer diffuse into the porous dielectric layer. Then the metal layer is removed.
摘要:
Nickel silicide formation with significantly reduced interface roughness is achieved by forming a diffusion modulating layer between the underlying silicon and nickel silicide layers. Embodiments include ion implanting nitrogen into the substrate and gate electrode, depositing a thin layer of titanium or tantalum, depositing a layer of nickel, and then heating to form a diffusion modulating layer containing nitrogen at the interface between the underlying silicon and nickel silicide layers.
摘要:
The electromigration resistance of nitride capped Cu lines is significantly improved by controlling the nitride deposition conditions to reduce the compressive stress of the deposited nitride layer, thereby reducing diffusion along the Cu-nitride interface. Embodiments include depositing a silicon nitride capping layer on inlaid Cu using dual frequency powers, holding the high frequency power constant and controlling the compressive stress of the deposited silicon nitride capping layer by varying the low frequency power to the susceptor, thereby enabling reduction of the compressive stress below about 2×107 Pascals. Embodiments also include sequentially and contiguously treating the exposed planarized surface of in-laid Cu with a soft plasma containing NH3 diluted with N2, and then depositing the silicon nitride capping layer by plasma enhanced chemical vapor deposition, while varying the low frequency power between about 100 to about 300 watts. Embodiments also include Cu dual damascene structures formed in dielectric material having a dielectric constant (k) less than about 3.9.
摘要:
A method for forming silicide contacts includes forming a layer on silicon-containing active device regions such as source, drain, and gate regions. The layer contains a metal that is capable of forming one or more metal silicides and a material that is soluble in a first metal silicide but not soluble in a second metal silicide, or is more soluble in the first metal silicide than in the second metal silicide. The layer may be formed by vapor deposition methods such as physical vapor deposition, chemical vapor deposition, evaporation, laser ablation, or other deposition method. A method for forming silicide contacts includes forming a metal layer, then implanting the metal layer and/or underlying silicon layer with a material such as that described above. The material may be implanted in the silicon layer prior to formation of the metal layer. Contacts formed include a first metal silicide and a material that is more soluble in a first metal silicide than in a second metal silicide. The contacts may be part of a semiconductor device including a substrate, active region containing silicon, and silicide contacts disposed over the active region and capable of electrically coupling the active region to other regions such as metallization lines.
摘要:
The electromigration resistance of nitride capped Cu lines is significantly improved by controlling the nitride deposition conditions to reduce the compressive stress of the deposited nitride layer, thereby reducing diffusion along the Cu-nitride interface. Embodiments include depositing a silicon nitride capping layer on inlaid Cu at a reduced RF power, e.g., about 400 to about 500 watts and an increased spacing, e.g., about 680 to about 720 mils, to reduce the compressive stress of the deposited silicon nitride layer to below about 2×107 Pascals. Embodiments also include sequentially and contiguously treating the exposed planarized surface of in-laid Cu with a soft plasma containing NH3 diluted with N2, ramping up the introduction of SiH4 and then initiating plasma enhanced chemical vapor deposition of a silicon nitride capping layer, while maintaining substantially the same pressure and N2 flow rate during plasma treatment, SiH4 ramp up and silicon nitride deposition. Embodiments also include Cu dual damascene structures formed in dielectric material having a dielectric constant (k) less than about 3.9.