Abstract:
A manifold structure has at least one flow passage and a center manifold section that has at least one machined cavity. The manifold structure includes a plurality of ultrasonically additively manufactured (UAM) finstock layers arranged in the flow passage. After the finstock is formed by UAM, the finstock is permanently joined to the center manifold section via a brazing or welding process. Using UAM and a permanent joining process enables joining of the UAM finstock having enhanced thermal features to a vacuum brazement structure. UAM enables the finstock to be formed of dissimilar metal materials or multi-material laminate materials. UAM also enables bond joints of the finstock to be arranged at angles greater than ten degrees relative to a horizontal axis by using the same aluminum material in the UAM process and in the vacuum brazing process.
Abstract:
A computer-implemented method includes measuring, by a first local controller connected to a first converter, one or more characteristics of the first converter. The first converter belongs to a set of two or more converters in a power system configured to power equipment, and each of the two or more converters is connected to a respective local controller. An arc fault is detected based at least in part on the one or more characteristics of the first converter, and an indication of the arc fault is communicated to the central controller. The arc fault is remediated by performing one or more remedial operations determined by at least one of the first local controller and the central controller.
Abstract:
An adaptive stability control system includes a direct current (DC) bus and one or more distributed controllers. The DC bus is configured to provide bidirectional pulsed power flow and energy storage. The distributed controller is configured to continuously measure an impedance of the DC bus and execute at least one adaptive control algorithm to regulate impedance of the DC bus to maintain stability of the bidirectional pulsed power flow and energy storage.
Abstract:
A manifold structure has at least one flow passage and a center manifold section that has at least one machined cavity. The manifold structure includes a plurality of ultrasonically additively manufactured (UAM) finstock layers arranged in the flow passage. After the finstock is formed by UAM, the finstock is permanently joined to the center manifold section via a brazing or welding process. Using UAM and a permanent joining process enables joining of the UAM finstock having enhanced thermal features to a vacuum brazement structure. UAM enables the finstock to be formed of dissimilar metal materials or multi-material laminate materials. UAM also enables bond joints of the finstock to be arranged at angles greater than ten degrees relative to a horizontal axis by using the same aluminum material in the UAM process and in the vacuum brazing process.
Abstract:
A monolithic microwave integrated circuit structure having: a semiconductor substrate structure having a plurality of active devices and a microwave transmission line having an input section, an output section and a interconnecting section electrically interconnecting the active devices on one surface of the substrate; a thermally conductive, electrically non-conductive heat sink; and a thermally conductive bonding layer for bonding the heat sink to the substrate, the thermally conductive bonding layer having an electrically conductive portion and an electrically non-conductive portion, the electrically conductive portion being disposed between the heat sink and an opposite surface of a portion of the substrate having the active devices and the electrically non-conductive portion being disposed on the opposite surface portion overlaying portion of the microwave transmission line section.
Abstract:
A system includes at least one component configured to generate thermal energy, a heat spreader configured to remove thermal energy from the at least one component, and at least one substrate configured to remove thermal energy from the heat spreader. The heat spreader includes a first portion and a second portion. The first portion of the heat spreader is coupled to the substrate, and the second portion of the heat spreader is coupled to the at least one component. The first portion of the heat spreader includes high aspect-ratio structures that are separated from one another. The high aspect-ratio structures cause the first portion of the heat spreader to be pliable and able to accommodate a mismatch in coefficients of thermal expansion between a material in the heat spreader and a material in the substrate.
Abstract:
An adaptive stability control system includes a direct current (DC) bus and one or more distributed controllers. The DC bus is configured to provide bidirectional pulsed power flow and energy storage. The distributed controller is configured to continuously measure an impedance of the DC bus and execute at least one adaptive control algorithm to regulate impedance of the DC bus to maintain stability of the bidirectional pulsed power flow and energy storage.
Abstract:
An electronic assembly including a thermal capacitor. An electronic substrate of the electronic assembly includes one or more insulating layers and one or more conductor layers provided along the one or more insulating layers. The one or more conductor layers including a conductive material. A shape memory thermal capacitor is received in the electronic substrate. The shape memory thermal capacitor includes a shape memory core including a shape memory material.
Abstract:
A system includes at least one component configured to generate thermal energy, a heat spreader configured to remove thermal energy from the at least one component, and at least one substrate configured to remove thermal energy from the heat spreader. The heat spreader includes a first portion and a second portion. The first portion of the heat spreader is coupled to the substrate, and the second portion of the heat spreader is coupled to the at least one component. The first portion of the heat spreader includes high aspect-ratio structures that are separated from one another. The high aspect-ratio structures cause the first portion of the heat spreader to be pliable and able to accommodate a mismatch in coefficients of thermal expansion between a material in the heat spreader and a material in the substrate.
Abstract:
A computer-implemented method includes measuring, by a first local controller connected to a first converter, one or more characteristics of the first converter. The first converter belongs to a set of two or more converters in a power system configured to power equipment, and each of the two or more converters is connected to a respective local controller. An arc fault is detected based at least in part on the one or more characteristics of the first converter, and an indication of the arc fault is communicated to the central controller. The arc fault is remediated by performing one or more remedial operations determined by at least one of the first local controller and the central controller.