Abstract:
A substrate connection member according to various embodiments of the present invention can comprise a printed circuit board which has a plurality of layers that are stacked and which comprises a front surface, a rear surface, and a side surface encompassing the front surface and the rear surface. The printed circuit board can comprise: an opening part which encompasses a partial region of the printed circuit board and which is penetratingly formed from the front surface to the rear surface; at least one bridge connected between the partial region and the printed circuit board by crossing at least a portion of the opening part; and at least one through-hole wire formed in the partial region from the front surface to the rear surface, wherein the inner surface of the opening part and the side surface of the bridge can be formed from a conductive member. Other various embodiments, in addition to the embodiments disclosed in the present invention, are possible.
Abstract:
An antenna device and an electronic device including the same are provided. The antenna device includes a housing that includes a first plate, a second plate facing a direction opposite to the first plate, and a side member surrounding a space between the first plate and the second plate, a display viewable through at least a portion of the first plate, an antenna assembly disposed within the housing wherein the antenna assembly includes a first printed circuit board, a second printed circuit board, at least one structure interconnecting the first printed circuit board and the second printed circuit board and including conductive paths, a plurality of conductive patterns, and a wireless communication circuit, a flexible printed circuit board, and a third printed circuit board.
Abstract:
An electronic device controls a driving condition based on an operating state. The device includes a function block, a function monitoring agent, and a driving control module. The function block includes a plurality of function modules. The function monitoring agent is configured to identify one or more activated function modules among the function modules in the function block. The driving control module is configured to determine the driving condition required for an operation of the activated function modules, and based on the determined driving condition, to drive the activated function modules.
Abstract:
According to various embodiments of the present invention, an electronic device may comprise: a housing, which comprises a first plate, a second plate facing the opposite direction to the first plate, and a side surface member surrounding a space between the first plate and the second plate; a display viewed through at least a part of the first plate; a battery, which is disposed in the housing and comprises a battery cell comprising multiple cell parts, at least some of which are arranged to overlap each other when viewed from above one surface of the battery, and multiple conductive members arranged so as to overlap each other at the edges of the multiple cell parts when viewed from above the one surface; a battery protection circuit joined to the multiple conductive members; and a processor operationally connected to the display and the battery. Various other embodiments may also be possible.
Abstract:
A semiconductor memory device capable of detecting a miscorrected bit generated in the semiconductor memory device outside the semiconductor memory device and a memory system including the semiconductor memory device are disclosed. The semiconductor memory device may generate first check bits based on first data received from the outside, divide an error correcting code (ECC) code word including the first data and the first check bits into a plurality of code word groups, and dispose a miscorrected bit, caused by error bits included in a first ECC code word group, in another ECC code word group rather than the first ECC code word group.
Abstract:
A semiconductor memory device performs a modified read operation or a modified write operation. The semiconductor memory device includes a memory cell array, a read circuit, and a write circuit. The semiconductor memory device further includes an operation unit performing an operation on read data obtained by the read circuit according to operation assignment information applied through an address line to reduce memory access time when entering a modified read mode. In addition, the semiconductor memory device may optionally manage a normal read mode and the modified read mode and allow operation result data output from the operation unit to be written by the write circuit in the modified read mode.
Abstract:
An electronic device includes a housing including a first plate including a glass plate, a second plate facing the first plate, and a side surface surrounding a space between the first plate and the second plate, a display positioned inside the space and exposed through a first area of the first plate, an antenna structure at least partially overlapping a second area of the first plate when viewed from above the first plate and which is connected to the second area, and a processor.
Abstract:
A method for predicting a defect in a semiconductor device includes: calculating a first probability that particles will be generated in a semiconductor element by radiation; calculating a second probability that damage will occur in the semiconductor element due to the particles; generating a training data set using input data and simulation data, the input data including damage data generated using the first probability and the second probability and including at least one of a position in which the damage will occur and an amount of the damage, impurity concentration of impurities doped in at least a portion of the semiconductor element, and structural data of the semiconductor element, and the simulation data including electrical characteristics of the semiconductor element obtained as a result of a simulation based on the input data; and training a machine learning model based on the training data set to generate a defect prediction model.
Abstract:
An electronic device includes a housing; a first circuit board, and a flexible circuit board. The first circuit board is disposed in an internal space of the housing and includes a plurality of first conductive terminals. The flexible circuit board includes a first connection portion including a plurality of second conductive terminals configured to connect to the plurality of first conductive terminals. The flexible circuit board also includes a connection portion extended from the first connection portion, and at least one conductive layer extended from the connection portion to at least a portion of the first connection portion. Additionally, the flexible circuit board includes at least one transmissive area in which light may be transmitted and the at least one conductive layer is at least partially omitted. At least some of the plurality of second conductive terminals are visible from the outside through the at least one transmissive area.
Abstract:
Various embodiments of the present disclosure may provide an electronic device that includes: a first plate directed in a first direction, a second plate directed in a second direction opposite to the first direction, and a side member configured to surround at least a part of the space between the first and second plates; a first printed circuit board (PCB) that is disposed between the first and second plates and includes at least one processor; a second printed circuit board (PCB) that is disposed between the first printed circuit board and the second plate and includes at least one antenna pattern; and a temperature sensor disposed to measure the temperature of at least a part of the second printed circuit board. Other various embodiments are possible.