Abstract:
An electric contact structure includes a first structural layer; a second structural layer made of dielectric material extending over the first structural layer; and an intermediate layer made of conductive material extending between the first structural layer and the second structural layer. A trench extends in the second structural layer delimited laterally by a wall of the second structural layer and at the bottom by a surface region of the intermediate layer. A diffusion barrier extends in the trench covering the surface region of the intermediate layer and the wall of the second structural layer. The diffusion barrier is a TiW—TiN—TiW tri-layer.
Abstract:
In one embodiment, a method manufactures a semiconductor device including metallizations having peripheral portions with one or more underlying layers having marginal regions extending facing the peripheral portions. The method includes: providing a sacrificial layer to cover the marginal regions of the underlying layer, providing the metallizations while the marginal regions of the underlying layer are covered by the sacrificial layer, and removing the sacrificial layer so that the marginal regions of the underlying layer extend facing the peripheral portions in the absence of contact interface therebetween, thereby avoiding thermo-mechanical stresses.
Abstract:
In one embodiment, a method manufactures a semiconductor device including metallizations having peripheral portions with one or more underlying layers having marginal regions extending facing the peripheral portions. The method includes: providing a sacrificial layer to cover the marginal regions of the underlying layer, providing the metallizations while the marginal regions of the underlying layer are covered by the sacrificial layer, and removing the sacrificial layer so that the marginal regions of the underlying layer extend facing the peripheral portions in the absence of contact interface therebetween, thereby avoiding thermo-mechanical stresses.
Abstract:
A MOS transistor for power applications is formed in a substrate of semiconductor material by a method integrated in a process for manufacturing integrated circuits which uses an STI technique for forming insulating regions. The method includes the phases of forming an insulating element on a top surface of the substrate and forming a control electrode on a free surface of the insulating element. The insulating element insulates the control electrode from the substrate. The insulating element includes a first portion and a second portion. The extension of the first portion along a first direction perpendicular to the top surface is lower than the extension of the second portion along such first direction. The phase of forming the insulating element includes generating the second portion by locally oxidizing the top surface.
Abstract:
In one embodiment, a semiconductor device includes one or more metallizations, such as, e.g., Cu-RDL metallizations, provided on a passivation layer over a dielectric layer. A via is provided through the passivation layer and the dielectric layer in the vicinity of the corners of the metallization. The via may be a “dummy” via without electrical connections to an active device and may be provided at a distance between approximately 1 micron (10−6 m.) and approximately 10 micron (10−5 m.) from each one of said converging sides landing on an underlying metal layer.
Abstract:
In one embodiment, a semiconductor device includes one or more metallizations, such as, e.g., Cu-RDL metallizations, provided on a passivation layer over a dielectric layer. A via is provided through the passivation layer and the dielectric layer in the vicinity of the corners of the metallization. The via may be a “dummy” via without electrical connections to an active device and may be provided at a distance between approximately 1 micron (10−6 m.) and approximately 10 micron (10−5 m.) from each one of said converging sides landing on an underlying metal layer.
Abstract:
According to a process for manufacturing an integrated power device, projections and depressions are formed in a semiconductor body that extend in a first direction and are arranged alternated in succession in a second direction, transversely to the first direction. Further provided are a first conduction region and a second conduction region. The first conduction region and the second conduction region define a current flow direction parallel to the first direction, along the projections and the depressions. To form the projections and the depressions, portions of the semiconductor body that extend in the first direction and correspond to the depressions, are selectively oxidized.
Abstract:
A MOS transistor includes a semiconductor layer with a drain region and a body region. A first insulating layer is disposed over the semiconductor layer, a gate-precursor layer is disposed over the first insulating layer, a second insulating layer disposed over the first insulating layer and a third insulating layer disposed over the second insulating layer. A source opening extends through the third insulating layer, the second insulating layer, the gate-precursor layer, and the first insulating layer. An implant through the source opening forms a source-precursor region in the semiconductor layer. The source opening is then lined and an body contact opening is made through the liner, the source-precursor region and into the body region. An implant through the body contact opening forms the body contact region below the source-precursor. The body contact opening is then filled with a metal.
Abstract:
A MOS transistor includes a semiconductor layer with a drain region and a body region. A first insulating layer is disposed over the semiconductor layer, a gate-precursor layer is disposed over the first insulating layer, a second insulating layer disposed over the first insulating layer and a third insulating layer disposed over the second insulating layer. A source opening extends through the third insulating layer, the second insulating layer, the gate-precursor layer, and the first insulating layer. An implant through the source opening forms a source-precursor region in the semiconductor layer. The source opening is then lined and an body contact opening is made through the liner, the source-precursor region and into the body region. An implant through the body contact opening forms the body contact region below the source-precursor. The body contact opening is then filled with a metal.