摘要:
A method of fabricating a MOS transistor by millisecond annealing. A semiconductor substrate with a gate stack comprising a gate electrode overlying a gate dielectric layer on a top surface of a semiconductor substrate is provided. At least one implanting process is performed to form two doped regions on opposite sides of the gate electrode. Millisecond annealing activates dopants in the doped regions. The millisecond anneal includes rapid heating and rapid cooling within 1 to 50 milliseconds.
摘要:
A method of fabricating a MOS transistor by millisecond annealing. A semiconductor substrate with a gate stack comprising a gate electrode overlying a gate dielectric layer on a top surface of a semiconductor substrate is provided. At least one implanting process is performed to form two doped regions on opposite sides of the gate electrode. Millisecond annealing activates dopants in the doped regions. The millisecond anneal includes rapid heating and rapid cooling within 1 to 50 milliseconds.
摘要:
A vertical transistor device and fabrication method thereof are provided, the vertical transistor device comprising a substrate having a deep trench. A capacitor is disposed in a lower portion of the deep trench. A conductive structure is disposed on the capacitor inside the deep trench. An epitaxial layer, having an epitaxial sidewall region, is disposed on the substrate. A vertical gate structure is disposed on the conductive structure and adjacent to the epitaxial sidewall region of the epitaxial layer.
摘要:
A vertical transistor device and fabrication method thereof are provided, the vertical transistor device comprising a substrate having a deep trench. A capacitor is disposed in a lower portion of the deep trench. A conductive structure is disposed on the capacitor inside the deep trench. An epitaxial layer, having an epitaxial sidewall region, is disposed on the substrate. A vertical gate structure is disposed on the conductive structure and adjacent to the epitaxial sidewall region of the epitaxial layer.
摘要:
A memory device is disclosed. A substrate is provided. A plurality of pillars is disposed on the substrate. Each pillar has a plurality of epitaxial layers, has a first sidewall and a second sidewall. A trench is formed between the pillars. A common bottom electrode is disposed in a lower portion of the trench and surrounded by a node dielectric layer. A first insulating layer is disposed on the common bottom electrode inside the trench. A plurality of gate structures is disposed on the first sidewall and inside the trench. A second insulating layer is disposed inside the trench and adjacent to the gate structures. A third insulating layer, body line, and fourth insulating layer are respectively disposed on the substrate and located between the second insulating layer and the second sidewall.
摘要:
A memory device is disclosed. A substrate is provided. A plurality of pillars is disposed on the substrate. Each pillar has a plurality of epitaxial layers, has a first sidewall and a second sidewall. A trench is formed between the pillars. A common bottom electrode is disposed in a lower portion of the trench and surrounded by a node dielectric layer. A first insulating layer is disposed on the common bottom electrode inside the trench. A plurality of gate structures is disposed on the first sidewall and inside the trench. A second insulating layer is disposed inside the trench and adjacent to the gate structures. A third insulating layer, body line, and fourth insulating layer are respectively disposed on the substrate and located between the second insulating layer and the second sidewall.
摘要:
A method for fabricating an RRAM is provided. First, a bottom electrode is formed. A resistive layer is formed on the bottom electrode. A top electrode is then formed on the resistive layer, wherein the top electrode is selected from the group consisting of indium tin oxide (ITO) and indium zinc oxide (IZO). Finally, the top electrode is irradiated with UV light.
摘要:
A method for forming a self-aligned buried strap in a vertical memory cell. A semiconductor substrate with a trench is provided. A collar dielectric layer is conformally formed on the trench bottom portion, and the trench is filled with a conducting layer. The collar dielectric layer is etched below the level of the surface of the conducting layer to form a groove between the conducting layer and the trench. The groove is filled with a doped conducting layer. The dopant in the doped conducting layer is diffused to the semiconductor substrate in an ion diffusion area as a buried strap. The conducting layer and the doped conducting layer are etched below the ion diffusion area. A top trench insulating layer is formed on the bottom of the trench, wherein the top trench insulating layer is lower than the ion diffusion area.
摘要:
A DRAM structure on a silicon substrate has an active area, gate conductors, deep trench capacitors, and vertical transistors. The deep trench capacitors are formed at intersections of the active area and the gate conductors, and each deep trench capacitor is coupled electrically to the corresponding vertical transistor to form a memory cell. The transistor includes a gate, a source in a lateral side of the gate, and a drain in another lateral side of the gate The depth of the drain is different from the depth of the source.
摘要:
A method of fabricating a trench isolation with high aspect ratio. The method comprises the steps of: providing a substrate with a trench; depositing a first isolation layer filling the trench by low pressure chemical vapor deposition; etching the first isolation layer so that its surface is lowered to the opening of the trench; depositing a second isolation layer to fill the trench without voids by high density plasma chemical vapor deposition and achieving global planarization by chemical-mechanical polishing then providing a rapidly annealing procedure. Accordingly, the present invention achieves void-free trench isolation with high aspect ratio.