Abstract:
Methods of fabricating semiconductor structures involve the formation of fins for finFET transistors having different stress/strain states. Fins of one stress/strain state may be employed to form n-type finFETS, while fins of another stress/strain state may be employed to form p-type finFETs. The fins having different stress/strain states may be fabricated from a common layer of semiconductor material. Semiconductor structures and devices are fabricated using such methods.
Abstract:
Methods of fabricating semiconductor structures involve the formation of fins for finFET transistors having different stress/strain states. Fins of one stress/strain state may be employed to form n-type finFETS, while fins of another stress/strain state may be employed to form p-type finFETs. The fins having different stress/strain states may be fabricated from a common layer of semiconductor material. Semiconductor structures and devices are fabricated using such methods.
Abstract:
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height.
Abstract:
Methods and structures for forming uniaxially-strained, nanoscale, semiconductor bars from a biaxially-strained semiconductor layer are described. A spatially-doubled mandrel process may be used to form a mask for patterning dense, narrow trenches through the biaxially-strained semiconductor layer. The resulting slicing of the biaxially-strained layer enhances carrier mobility and can increase device performance.
Abstract:
The disclosure concerns a method of stressing a semiconductor layer comprising: depositing, over a semiconductor on insulator (SOI) structure having a semiconductor layer in contact with an insulating layer, a stress layer; locally stressing said semiconductor layer by forming one or more openings in said stress layer, said openings being aligned with first regions of said semiconductor layer in which transistor channels are to be formed; and deforming second regions of said insulating layer adjacent to said first regions by temporally decreasing, by annealing, the viscosity of said insulator layer.
Abstract:
A method includes forming a plurality of fin elements above a substrate. A mask is formed above the substrate. The mask has an opening defined above at least one selected fin element of the plurality of fin elements. An ion species is implanted into the at least one selected fin element through the opening to increase its etch characteristics relative to the other fin elements. The at least one selected fin element is removed selectively relative to the other fin elements.
Abstract:
Methods and structures for forming strained-channel FETs are described. A strain-inducing layer may be formed under stress in a silicon-on-insulator substrate below the insulator. Stress-relief cuts may be formed in the strain-inducing layer to relieve stress in the strain-inducing layer. The relief of stress can impart strain to an adjacent semiconductor layer. Strained-channel, fully-depleted SOI FETs and strained-channel finFETs may be formed from the adjacent semiconductor layer. The amount and type of strain may be controlled by etch depths and geometries of the stress-relief cuts and choice of materials for the strain-inducing layer.
Abstract:
A method of making a semiconductor device includes forming a first spacer for at least one gate stack on a first semiconductor material layer, and forming a respective second spacer for each of source and drain regions adjacent the at least one gate. Each second spacer has a pair of opposing sidewalls and an end wall coupled thereto. The method includes filling the source and drain regions with a second semiconductor material while the first and second spacers provide confinement.
Abstract:
Methods and structures for forming strained-channel FETs are described. A strain-inducing layer may be formed under stress in a silicon-on-insulator substrate below the insulator. Stress-relief cuts may be formed in the strain-inducing layer to relieve stress in the strain-inducing layer. The relief of stress can impart strain to an adjacent semiconductor layer. Strained-channel, fully-depleted SOI FETs and strained-channel finFETs may be formed from the adjacent semiconductor layer. The amount and type of strain may be controlled by etch depths and geometries of the stress-relief cuts and choice of materials for the strain-inducing layer.
Abstract:
Methods and structures for forming strained-channel finFETs are described. Fin structures for finFETs may be formed in two epitaxial layers that are grown over a bulk substrate. A first thin epitaxial layer may be cut and used to impart strain to an adjacent channel region of the finFET via elastic relaxation. The structures exhibit a preferred design range for increasing induced strain and uniformity of the strain over the fin height.