摘要:
The invention provides a highly reliable nitride semiconductor light emitting device improved in electrostatic discharge withstand voltage. In the light emitting device, an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer are sequentially formed on a substrate. The active layer features a multiple quantum well structure including a plurality of multiple quantum barrier layers and quantum well layers. At least one of the quantum barrier layers has a band-gap modulated multilayer structure.
摘要:
The invention provides a highly reliable nitride semiconductor light emitting device improved in electrostatic discharge withstand voltage. In the light emitting device, an n-type nitride semiconductor layer, an active layer and a p-type nitride semiconductor layer are sequentially formed on a substrate. The active layer features a multiple quantum well structure including a plurality of multiple quantum barrier layers and quantum well layers. At least one of the quantum barrier layers has a band-gap modulated multilayer structure.
摘要:
A gallium nitride-based semiconductor light-emitting device includes a sapphire substrate having a nitridated upper surface; a polarity conversion layer formed on the sapphire substrate and made of MgN-based single ciystals; a first conductive gallium nitride-based semiconductor layer formed on the polarity conversion layer; an active layer formed on the first conductive gallium nitride-based semiconductor layer; and a second conductive gallium nitride-based semiconductor layer formed on the active layer.
摘要:
Disclosed is a method of fabricating nitride semiconductors in a MOCVD reactor. GaN is first deposited on an inner wall of the MOCVD reactor, and a sapphire substrate is loaded into the MOCVD reactor. The sapphire substrate is heated and etching gas is injected into the MOCVD reactor. NH3 gas is injected into the MOCVD reactor to nitrify the surface of the sapphire substrate. A nitride semiconductor layer is grown on the nitrified sapphire substrate. By surface-reforming the sapphire substrate and then growing the nitride semiconductor layer on the surface-reformed sapphire substrate via MOCVD without formation of a low temperature buffer layer, an excellent nitride semiconductor structure can be realized. In this circumstance, the nitride semiconductor layer for example of GaN can be grown effectively on the surface-treated sapphire substrate because GaN deposition occurs on the sapphire substrate while it is etched.
摘要:
The present invention provides a semiconductor light-emitting device. The light-emitting device comprises a first conductive clad layer, an active layer, and a second conductive clad layer sequentially formed on a substrate. In the light-emitting device, the substrate has one or more side patterns formed on an upper surface thereof while being joined to one or more edges of the upper surface. The side patterns consist of protrusions or depressions so as to scatter or diffract light to an upper portion or a lower portion of the light-emitting device.
摘要:
Disclosed is a method of fabricating nitride semiconductors in a MOCVD reactor. GaN is first deposited on an inner wall of the MOCVD reactor, and a sapphire substrate is loaded into the MOCVD reactor. The sapphire substrate is heated and etching gas is injected into the MOCVD reactor. NH3 gas is injected into the MOCVD reactor to nitrify the surface of the sapphire substrate. A nitride semiconductor layer is grown on the nitrified sapphire substrate. By surface-reforming the sapphire substrate and then growing the nitride semiconductor layer on the surface-reformed sapphire substrate via MOCVD without formation of a low temperature buffer layer, an excellent nitride semiconductor structure can be realized. In this circumstance, the nitride semiconductor layer for example of GaN can be grown effectively on the surface-treated sapphire substrate because GaN deposition occurs on the sapphire substrate while it is etched.
摘要:
The present invention provides a semiconductor light-emitting device. The light-emitting device comprises a first conductive clad layer, an active layer, and a second conductive clad layer sequentially formed on a substrate. In the light-emitting device, the substrate has one or more side patterns formed on an upper surface thereof while being joined to one or more edges of the upper surface. The side patterns consist of protrusions or depressions so as to scatter or diffract light to an upper portion or a lower portion of the light-emitting device.
摘要:
Disclosed herein is a nitride-based semiconductor light-emitting device. The nitride-based semiconductor light-emitting device comprises an n-type clad layer made of n-type Alx1Iny1Ga(1-x1-y1)N (where 0≦x1≦1, 0≦y1≦1, and 0≦x1+y1≦1), a multiple quantum well-structured active layer made of undoped InAGa1-AN (where 0
摘要翻译:本文公开了一种氮化物基半导体发光器件。 氮化物系半导体发光元件包括由n型Al x In 1 Ga 1(1-x1-y1)N(其中0≦̸ x1≦̸ 1,0& nlE; y1≦̸ 1和0≦̸ x1 + y1&nlE ; 1),由n型覆盖层上形成的未掺杂的InAGa1-AN(其中0
摘要:
The present invention provides a nitride semiconductor device. The nitride semiconductor device comprises an n-type nitride semiconductor layer formed on a nitride crystal growth substrate. An active layer is formed on the n-type nitride semiconductor layer. A first p-type nitride semiconductor layer is formed on the active layer. A micro-structured current diffusion pattern is formed on the first p-type nitride semiconductor layer. The current diffusion pattern is made of an insulation material. A second p-type nitride semiconductor layer is formed on the first p-type nitride semiconductor layer having the current diffusion pattern formed thereon.
摘要:
The present invention provides a nitride semiconductor device. The nitride semiconductor device comprises an n-type nitride semiconductor layer formed on a nitride crystal growth substrate. An active layer is formed on the n-type nitride semiconductor layer. A first p-type nitride semiconductor layer is formed on the active layer. A micro-structured current diffusion pattern is formed on the first p-type nitride semiconductor layer. The current diffusion pattern is made of an insulation material. A second p-type nitride semiconductor layer is formed on the first p-type nitride semiconductor layer having the current diffusion pattern formed thereon.