Abstract:
A tunable quadrature oscillator includes a first oscillator having an output, a second oscillator having an output, and a variable gain amplifier. The variable gain amplifier includes an input coupled to the output of the second oscillator, and an output inductively coupled to the output of the first oscillator.
Abstract:
An apparatus is provided. Transmission line cells are formed in a first region. A first metallization layer is formed over the transmission line cells within a portion of the first region. At least a portion of the first metallization layer is electrically coupled to the plurality of transmission line cells. A second metallization layer is formed over the first metallization layer with an interconnect portion, and overlay portion, and a first balun. The interconnect portion at least partially extends into the first region, and the overlay portion is within the first region. The first balun winding is electrically coupled to the overlay portion and partially extends into a second region. The first region partially surrounds the second region. A third metallization layer is formed over the second metallization layer having a second balun winding within the second region, where the second winding is generally coaxial with the first balun winding.
Abstract:
An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
Abstract:
A frequency detection technique includes generating first and second signals such that a frequency of the first signal is the same as a frequency of the second signal and such that the second signal is phase-shifted by a fixed amount with respect to the first signal. The technique further includes generating a third signal having a frequency that corresponds to an absolute value of a difference between the frequency of the first signal and an integer multiple of a frequency of the reference signal. The technique further includes generating a fourth signal having a frequency that corresponds to an absolute value of a difference between the frequency of the second signal and an integer multiple of the frequency of the reference signal. The technique further includes generating an fifth signal indicative of whether a phase relationship between the third and fourth signals is a leading phase relationship, a lagging phase relationship, or an in-phase relationship.
Abstract:
A horn antenna is formed within a multilayer substrate and has a generally trapezoidal shaped top plate and bottom plate formed in different layers of the multilayer substrate. A set of densely spaced vias form two sidewalls of the horn antenna by coupling adjacent edges of the top plate and the bottom plate. The horn antenna has a narrow input end and a wider flare end. A microstrip line is coupled to the top plate and a ground plane element is coupled to the bottom plate at the input end of the horn antenna.
Abstract:
In an amplifier, a first stage receives a differential input voltage, which is formed by first and second input voltages, and outputs a first differential current in response thereto on first and second lines having respective first and second line voltages. A second stage receives the first and second line voltages and outputs a second differential current in response thereto on third and fourth lines having respective third and fourth line voltages. A transformer includes first and second coils. A first terminal of the first coil is coupled through a first resistor to the first line. A second terminal of the first coil is coupled through a second resistor to the second line. A first terminal of the second coil is coupled through a third resistor to the third line. A second terminal of the second coil is coupled through a fourth resistor to the fourth line.
Abstract:
A horn antenna is formed within a multilayer substrate and has a generally trapezoidal shaped top plate and bottom plate formed in different layers of the multilayer substrate. A set of densely spaced vias form two sidewalls of the horn antenna by coupling adjacent edges of the top plate and the bottom plate. The horn antenna has a narrow input end and a wider flare end. A microstrip line is coupled to the top plate and a ground plane element is coupled to the bottom plate at the input end of the horn antenna.
Abstract:
In one example, an apparatus comprises an integrated circuit, a first metal layer, and a second metal layer. The first metal layer includes a first antenna connected to the integrated circuit, the first antenna being in a first region, the first region being external to the integrated circuit. The second metal layer includes a second antenna in a second region external to the integrated circuit. The apparatus further comprises a substrate between the first and second metal layers, in which the substrate and the first and second metal layers form a laminate. The apparatus further comprises a through-via in the substrate that couples between the first and second antennas.
Abstract:
An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
Abstract:
An apparatus is provided. Transmission line cells are formed in a first region. A first metallization layer is formed over the transmission line cells within a portion of the first region. At least a portion of the first metallization layer is electrically coupled to the plurality of transmission line cells. A second metallization layer is formed over the first metallization layer with an interconnect portion, and overlay portion, and a first balun. The interconnect portion at least partially extends into the first region, and the overlay portion is within the first region. The first balun winding is electrically coupled to the overlay portion and partially extends into a second region. The first region partially surrounds the second region. A third metallization layer is formed over the second metallization layer having a second balun winding within the second region, where the second winding is generally coaxial with the first balun winding.