Abstract:
Scanning probe systems, which include scanning probe microscopes (SPMs), atomic force microscope (AFMs), or profilometers, are disclosed that use cantilevered spring (e.g., stressy metal) probes formed on transparent substrates. When released, a free end bends away from the substrate to form the cantilevered spring probe, which has an in-plane or out-of-plane tip at its free end. The spring probe is mounted in a scanning probe system and is used to scan or otherwise probe a substrate surface. The probes are used for topography, electrical, optical and thermal measurements.
Abstract:
An out-of-plane micro-structure which can be used for on-chip integration of high-Q inductors and transformers places the magnetic field direction parallel to the substrate plane without requiring high aspect ratio processing. The photolithographically patterned coil structure includes an elastic member having an intrinsic stress profile. The intrinsic stress profile biases a free portion away from the substrate forming a loop winding. An anchor portion remains fixed to the substrate. The free portion end becomes a second anchor portion which may be connected to the substrate via soldering or plating. Alternately, the loop winding can be formed of two elastic members in which the free ends are joined in mid-air. A series of individual coil structures can be joined via their anchor portions to form inductors and transformers.
Abstract:
Scanning probe systems, which include scanning probe microscopes (SPMs), atomic force microscope (AFMs), or profilometers, are disclosed that use cantilevered spring (e.g., stressy metal) probes formed on transparent substrates. When released, a free end bends away from the substrate to form the cantilevered spring probe, which has an in-plane or out-of-plane tip at its free end. The spring probe is mounted in a scanning probe system and is used to scan or otherwise probe a substrate surface. A laser beam is directed through the transparent substrate onto the probe to measure tip movement during scanning or probing. Other detection schemes can also be used (e.g., interferometry, capacitive, piezoresistive). The probes are used for topography, electrical, optical and thermal measurements. The probes also allow an SPM to operate as a depth gauge.
Abstract:
Several methods and structures for improving the yield of out-of-plane micro-device structures including springs and coils are described. Structures and methods for adjusting the coil diameter after spring release, if necessary, are also disclosed. In one method the radius of curvature of the released elastic members is controlled by depositing a layer of a reflow material and reflowing the layer after release. The high yield structures may be used in numerous electronic applications such as filter circuits.
Abstract:
An out-of-plane micro-structure which can be used for on-chip integration of high-Q inductors and transformers places the magnetic field direction parallel to the substrate plane without requiring high aspect ratio processing. The photolithographically patterned coil structure includes an elastic member having an intrinsic stress profile. The intrinsic stress profile biases a free portion away from the substrate forming a loop winding. An anchor portion remains fixed to the substrate. The free portion end becomes a second anchor portion which may be connected to the substrate via soldering or plating. A series of individual coil structures can be joined via their anchor portions to form inductors and transformers.
Abstract:
Efficient methods for lithographically fabricating spring structures onto a substrate containing contact pads or metal vias by forming both the spring metal and release material layers using a single mask. Specifically, a pad of release material is self-aligned to the spring metal finger using a photoresist mask or a plated metal pattern, or using lift-off processing techniques. A release mask is then used to release the spring metal finger while retaining a portion of the release material that secures the anchor portion of the spring metal finger to the substrate. When the release material is electrically conductive (e.g., titanium), this release material portion is positioned directly over the contact pad or metal via, and acts as a conduit to the spring metal finger in the completed spring structure. When the release material is non-conductive, a metal strap is formed to connect the spring metal finger to the contact pad or metal via, and also to further anchor the spring metal finger to the substrate.
Abstract:
Several methods and structures for improving the yield of out-of-plane micro-device structures including springs and coils are described. In one method the springs used to form out-of-plane structures are constrained via a tether to avoid bunching and entanglement. The high yield structure may be used in numerous electronic applications such as filter circuits.
Abstract:
An out-of-plane micro-structure which can be used for on-chip integration of high-Q inductors and transformers places the magnetic field direction parallel to the substrate plane without requiring high aspect ratio processing. The photolithographically patterned coil structure includes an elastic member having an intrinsic stress profile. The intrinsic stress profile biases a free portion away from the substrate forming a loop winding. An anchor portion remains fixed to the substrate. The free portion end becomes a second anchor portion which may be connected to the substrate via soldering or plating. A series of individual coil structures can be joined via their anchor portions to form inductors and transformers.
Abstract:
Several methods and structures for improving the yield of out-of-plane micro-device structures including springs and coils are described. In one method the springs used to form out-of-plane structures are constrained via a tether to avoid bunching and entanglement. The high yield structure may be used in numerous electronic applications such as filter circuits.
Abstract:
A method and apparatus for interconnecting at least two devices. Each of the interconnected devices includes a contact structure for electrically and/or physically interconnecting the devices. Preferably, the contact structure for at least one of the devices includes a spring contact. An adhesive, such as a UV-curable adhesive, is applied to at least a portion of one of the devices, and once the adhesive is applied, the devices are assembled, i.e., brought into sufficient proximity so that the contact structures interconnect the devices. The adhesive can be applied directly to contact structures of one of the devices and/or can be applied to other portions of the devices so that the adhesive flows around the contact structures during assembly. The adhesive is then cured to bond the devices together. Applying the adhesive before assembling the devices prevents interference with the interconnection between the contact structures, especially if the contact structures include spring contacts to be electrically connected with corresponding contact pads.