Abstract:
Method and apparatus for providing a vehicle having a service brake of the drum or disc brake type, a secondary brake, a control system for the distribution of a requested brake power between the service brake and secondary brake and an arrangement for the reconditioning of a friction pair forming part of the service brake. The method is for the reconditioning of a friction pair in a service brake of the drum or disc brake type forming part of a brake system in a vehicle, which in addition to the service brake having a secondary brake and a control system for distribution of the requested brake power between the service brake and secondary brake.
Abstract:
In a brake apparatus for a two-axle vehicle to obtain uniform wear of the brake linings a conventional ABS control device is so configured that on braking a braking pressure is supplied to the brakes of the rear wheels which is greater than a braking pressure supplied to the brakes of the front wheels for as long as the rotational deceleration of the rear wheels remains below a predetermined value.
Abstract:
Example methods and apparatus to perform brake sweeping procedures on vehicle brakes are described herein. An example apparatus includes a controller to determine when a vehicle has made a turn, compare an angle at which the vehicle has turned to an angle threshold, and schedule a brake sweeping procedure based on the comparison.
Abstract:
A method for avoiding reducing scoring of the brake disc or the brake drum of a vehicle driven under rainy conditions calculates a product of three parameters, and activates an automatic braking operation for the vehicle, regularly, whenever the product exceeds the pre-determined threshold level. The first parameter is a rain intensity based parameter, a measure of the current raining intensity. The second parameter is a brake-activation-free driving time parameter, representing the time elapsed since the braking system of the vehicle was activated last. The third parameter is a speed parameter, which represents a current speed of the vehicle. As the automatic braking operation is carried out, the particles of dust, water, snow and de-icing substances, adhered to the brake disc of the vehicle, and causing scoring of the brake disc, are quickly removed, thus, reducing disc scoring.
Abstract:
The invention relates to a disk brake, in particular for utility vehicles, comprising a brake caliper, which extends over a brake disk, an application device located in the brake caliper for applying brake pads on both sides of the brake disk in the direction of the latter, in addition to at least one adjusting system located in the brake caliper for compensating wear and tear on the brake pad and/or disk. Said disk brake is characterized in that the adjusting system is configured on one or both sides of the brake disk as a preassembled adjuster module, which has at least the following components: an electromotor, which acts as the drive, or a drive connection to an electromotor and a reduction gear connected downstream of the electromotor, the rotative drive being fitted onto the mounting plate(s).
Abstract:
The invention relates to a disc brake, in particular for utility vehicles, comprising a brake caliper (1), which extends over a brake disc (3), an application device (13) located in the brake caliper for applying brake pads (5, 7) on both sides of the brake disc (3) in the direction of the latter, in addition to at least one adjusting system located in the brake caliper for compensating wear and tear on the brake pad and/or disc, by adjusting the distance between the brake pad (7) and the brake disc (3). The adjusting system has an adjusting rotative device. The disc brake is characterised in that at least one of the adjusting rotative devices is provided on each side of the brake disc (3) for adjusting the axial distances between the two brake pads (5, 7) and brake disc (3).
Abstract:
A method of ensuring the braking effect of brake actuators in a vehicle is described, each brake actuator having first and second components for producing the braking effect, where films on the first components which would interfere with the deployment of the braking effect are removed. In this method, when an activation condition is met, the brake actuators are activated to remove the films so that the second components are applied to the first components, thereby setting the vehicle deceleration so that little or no deceleration is perceived by the driver. In checking on whether the activation condition is met, a quantity describing operation of the accelerator pedal is taken into account.
Abstract:
A method of ensuring the braking effect of brake actuators in a vehicle is described, each brake actuator having first and second components for producing the braking effect, where films on the first components which would interfere with the deployment of the braking effect are removed. In this method, when an activation condition is met, the brake actuators are activated to remove the films so that the second components are applied to the first components, thereby setting the vehicle deceleration so that little or no deceleration is perceived by the driver. In checking on whether the activation condition is met, a quantity describing operation of the accelerator pedal is taken into account.
Abstract:
Hybrid or fully electric vehicle comprising: a conventional braking system based on friction bodies to brake the motor vehicle by interaction of the friction bodies in response to the operation of a brake pedal or any other equivalent control member, a reversible electric machine operatively coupled to the wheels of the vehicle and electronically controllable to operate selectively as an electric engine to generate a mechanical power to propel to the vehicle and as an electric generator to convert the kinetic energy of the motor vehicle into electrical energy, and an automotive electronic control system comprising a sensory system to measure automotive quantities, and an electronic control unit to control operation of the conventional braking system and of the electric machine in response to the operation of the brake pedal or any other operationally equivalent control member. The electronic control unit is further configured to control operation of: the electric machine to selectively perform one or more functions including regenerative braking, in which the electric machine is operated as an electric generator to recover the kinetic energy of the motor vehicle during braking and convert it into electrical energy, and the conventional braking system to clean the friction bodies of the conventional braking system based on the number of brakings performed by the conventional braking system and counted starting from the start-up of the motor vehicle.
Abstract:
Some embodiments of the present invention provide a system comprising: a first, controller operable to assume one of a plurality of respective states, in a first state the first controller being configured to generate a first controller powertrain signal in order to cause a powertrain to develop drive torque, and a first controller brake signal in order to cause application of a brake to one or more wheels, the first controller being configured to generate the first controller powertrain signal and first controller brake signal to cause a vehicle to operate in accordance with the target speed value, wherein when the first controller is in a predetermined one or more states the first controller is configured automatically to perform a brake wipe operation in which the first controller generates the first controller brake signal in dependence on one or more predetermined conditions while continuing to cause a vehicle to operate in accordance with the target speed value.