Abstract:
The invention belongs to the technical field of metal micro-forming, and in particular relates to a method for inflating micro-channels. The present invention is aimed at the problems of low process flexibility, single product type, and non-closed structure of the micro-channel when preparing metal micro-channels by micro-plastic forming of ultra-thin metal strips. The present invention uses a method combining numerical simulation and bond rolling experiment to analyze the effect of the hydrogen pressure and bond strength of the metal composite ultra-thin strip after bond rolling on the pore diameter of the micro-channel, and the corresponding relationship between the micro-channel pore diameter and the titanium hydride content, heating temperature, and bond strength of the metal composite ultra-thin strip is obtained.
Abstract:
A mirror device includes a frame body, a mirror configured to tilt about a Y-axis with respect to the frame body, a fixed inner comb electrode including a plurality of electrode fingers arranged in the arrangement direction along the Y-axis and provided at the frame body, and a movable inner comb electrode including a plurality of electrode fingers arranged in the arrangement direction and provided at the mirror, the electrodes fingers of the fixed inner comb electrode and the movable inner comb electrode being alternately arranged. The mirror includes a mirror body and an extension extending from the mirror body. Some of the electrode fingers of the movable inner comb electrode are provided at the mirror body, and another electrode fingers of the movable inner comb electrode are provided at the extension.
Abstract:
Provided is an atomic-smooth device with a microstructure. The device includes, from the bottom to top, a substrate, a bonding material, a second dielectric layer on the substrate, the microstructure, and a first dielectric layer, where a surface of the first dielectric layer is an atomic-smooth surface. Further provided is a method for preparing an atomic-smooth device with a microstructure to effectively avoid pits or burrs generated when the existing microstructure is machined.
Abstract:
The present invention provides a method for preparing a micro-cavity array surface with an inclined smooth bottom surface based on an air molding method. The method includes: preparing a micro-cavity array surface; preparing an auxiliary microstructure polymer template, and performing plasma treatment on the auxiliary microstructure polymer template; uniformly spreading a layer of a liquid polymer film to be formed on the auxiliary microstructure polymer template subjected to the plasma treatment; placing a gap bead in an empty position on the micro-cavity array surface; placing the auxiliary microstructure polymer template spread with the liquid polymer film on the gap bead on the micro-cavity array surface, maintaining this state, and feeding the auxiliary microstructure polymer template into a vacuum drying oven; and heating and solidifying the liquid polymer film, and separating the micro-cavity array surface to obtain the micro-cavity array surface with the inclined smooth bottom surface.
Abstract:
The plasma-assisted method of precise alignment and pre-bonding for microstructure of glass and quartz microchip belongs to micromachining and bonding technologies of the microchip. The steps of which are as follows: photoresist and chromium layers on glass or quartz microchip are completely removed followed by sufficient cleaning of the surface with nonionic surfactant and quantities of ultra-pure water. Then the surface treatment is proceeded for an equipping surface with high hydrophily with the usage of plasma cleaning device. Under the drying condition, the precise alignment is accomplished through moving substrate and cover plate after being washed with the help of microscope observation. Further on, to achieve precise alignment and pre-bonding of the microstructure of glass and quartz microchip, a minute quantity of ultrapure water is instilled into a limbic crevice for adhesion, and entire water is completely wiped out by vacuum drying following sufficient squeezing. Based on the steps above, it is available to achieve permanent bonding by further adopting thermal bonding method. In summary, it takes within 30 min to finish the whole operation of precise alignment and pre-bonding by this method. Besides, this method is of great promise because of its speediness, efficiency, easy maneuverability, operational safety and wide applications.
Abstract:
The plasma-assisted method of precise alignment and pre-bonding for microstructure of glass and quartz microchip belongs to micromachining and bonding technologies of the microchip. The steps of which are as follows: photoresist and chromium layers on glass or quartz microchip are completely removed followed by sufficient cleaning of the surface with nonionic surfactant and quantities of ultra-pure water. Then the surface treatment is proceeded for an equipping surface with high hydrophily with the usage of plasma cleaning device. Under the drying condition, the precise alignment is accomplished through moving substrate and cover plate after being washed with the help of microscope observation. Further on, to achieve precise alignment and pre-bonding of the microstructure of glass and quartz microchip, a minute quantity of ultrapure water is instilled into a limbic crevice for adhesion, and entire water is completely wiped out by vacuum drying following sufficient squeezing. Based on the steps above, it is available to achieve permanent bonding by further adopting thermal bonding method. In summary, it takes within 30 min to finish the whole operation of precise alignment and pre-bonding by this method. Besides, this method is of great promise because of its speediness, efficiency, easy maneuverability, operational safety and wide applications.
Abstract:
At the first etching step of etching an SOI substrate from a first silicon layer side, a portion of a first structure formed of the first silicon layer is formed as a pre-structure having a larger shape than a final shape. At the mask formation step of forming a final mask on a second silicon layer side of the SOI substrate, a first mask corresponding to the final shape of the first structure is formed in the pre-structure. At the second etching step of etching the SOI substrate from the second silicon layer side, the second silicon layer and the pre-structure are, using the first mask, etched to form the final shape of the first structure.
Abstract:
There is provided a sensor element including: a semiconductor base member having a first main surface and a second main surface located opposite to the first main surface, and having a cavity structure formed on the second main surface side; and a detection element formed on the first main surface side in a region where the cavity structure is formed, the second main surface of the semiconductor base member including a convexly and concavely shaped portion, and a tip of a convex portion of the convexly and concavely shaped portion having a curved shape.
Abstract:
At the first etching step of etching an SOI substrate from a first silicon layer side, a portion of a first structure formed of the first silicon layer is formed as a pre-structure having a larger shape than a final shape. At the mask formation step of forming a final mask on a second silicon layer side of the SOI substrate, a first mask corresponding to the final shape of the first structure is formed in the pre-structure. At the second etching step of etching the SOI substrate from the second silicon layer side, the second silicon layer and the pre-structure are, using the first mask, etched to form the final shape of the first structure.