摘要:
In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
摘要:
There is provided macrostructures of porous inorganic material which can have controlled size, shape, and/or porosity and a process for preparing the macrostructures. The macrostructures comprise a three-dimension network of particles of porous inorganic materials. The process for preparing the macrostructures involves forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming the porous inorganic material and then converting the synthesis mixture to the porous inorganic material. After formation of the composite material, the porous organic ion exchanger can be removed from the composite material to obtain the macrostructures.
摘要:
There is provided macrostructures of porous inorganic material which can have controlled size, shape, and/or porosity and a process for preparing the macrostructures. The macrostructures comprise a three-dimension network of particles of porous inorganic materials. The process for preparing the macrostructures involves forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming a porous inorganic material and then converting the synthesis mixture to a solid porous inorganic material. After formation of the composite material, the porous organic ion exchanger can be removed from the composite material to obtain the macrostructures, either before or after the porous inorganic material is hydrothermally treated with a structure directing agent to convert at least a portion of such porous inorganic material to a crystalline molecular sieve composition. The resulting macrostructure is composed of particles of the crystalline molecular sieve composition.
摘要:
The present invention relates to the preparation of nanocrystalline zeolite beta by a modified aerogel protocol comprising four steps, namely, hydrolysis, nucleation, crystallization and supercritcal drying.
摘要:
The invention relates to a method for synthesizing a family of zeolite materials, grouped together under the name ITQ-16, in an OHnull medium and in the absence of fluorides and to the catalytic applications thereof. The zeolite ITQ-16 family of materials is characterized by having different proportions of distinct polymorphs A, B and C described as possible intergrowths in the Beta zeolite and, therefore, the X-ray diffraction patterns of said family are different from that described for the Beta zeolite. In its calcinated form, zeolite ITQ-16 has the following empirical formula: x(MXO2):tTO2:gGeO2:(1nullg)SiO2, wherein T is one or more elements having null4 oxidation status and different from Ge and Si; X is one or more elements having null3 oxidation status; and M can be Hnull or one or more inorganic cations with a nulln charge.
摘要:
The invention involves a process for production of macrostructures of a microporous material. The process is characterized by the fact that seeds formed in or introduced by ion exchange or adsorption to a porous organic ion exchanger with the desired size, shape and porosity are made to grow and form a continuous structure by further deposition of inorganic material from a synthesis solution under hydrothermal conditions. The organic ion exchanger can be eliminated by chemical destruction or dissolution and, in so doing, leaves behind an inorganic microporous structure with the size and shape of the employed organic ion exchanger.
摘要:
In a process for synthesizing a porous crystalline material, a mixture capable of forming said material is prepared wherein the mixture comprises sources of water, an oxide of a tetravalent element Y, preferably silicon, an oxide of a trivalent element X, wherein X is selected from the group consisting of aluminum, boron, gallium, iron, and indium, fluoride ions, and an organonitrogen cation RNmnull capable of directing the synthesis of said material, wherein the molar ratio of fluoride ions to organonitrogen cations RNmnull in said mixture is greater than 1.15 m but less than 2.5 m. The mixture is maintained under crystallization conditions until crystals of said material are formed and the resultant crystalline material is recovered.
摘要翻译:在合成多孔结晶材料的方法中,制备能够形成所述材料的混合物,其中所述混合物包含水源,四价元素Y的氧化物,优选硅,三价元素X的氧化物,其中X被选择 从由铝,硼,镓,铁和铟组成的组,氟离子和能够引导所述材料的合成的有机氮阳离子RN m +,其中氟离子与有机氮阳离子的摩尔比RN
摘要:
The present invention relates to zeolithic materials having a characteristic X ray diffraction pattern, and its preparation method, characterized by the relatively low pH of the synthesis medium and the use of F− anions as mineralizing agent. The invention also claims the use of the obtained material in catalytic processes for the transformation of hydrocarbons and in oxidation process. The method comprises heating at 363-473° K a reaction mixture which contains a source of at least one tetravalent element T(IV), optionally a source of an element T(III), optionally H2O2, a structure director organic cation, a source of anions F− and water, the presence of alkaline cations is not necessary.
摘要翻译:本发明涉及具有特征X射线衍射图的沸石材料及其制备方法,其特征在于合成介质的pH值相对较低,并且使用F-阴离子作为矿化剂。 本发明还要求所获得的材料在烃转化和氧化过程的催化过程中的用途。 该方法包括在363-473°K加热反应混合物,该反应混合物含有至少一种四价元素T(IV)的源,任选的元素T(III)的源,任选的H 2 O 2,结构导向剂有机阳离子,源 的阴离子F-和水,碱性阳离子的存在是不必要的。
摘要:
This invention relates to the synthesis of large pore composite molecular sieves and to the synthetic large pore composite molecular sieves so produced. The molecular sieves of the invention have the same general utilities of the comparable molecular sieves of the prior art but have been found to be superior catalysts and absorbents. This invention relates to a hydrothermal synthesis of large pore molecular sieves from nutrients, at least one of which contains an amorphous framework-structure, and which framework-structure is essentially retained in the synthetic molecular sieve. This invention stems from a discovery that the intrinsic porosity characteristics of a nutrient that possesses an amorphous cation oxide-framework can be substantially retained in the final molecular sieve containing product formed by a hydrothermal process by carefully controlling the conditions under which the hydrothermal process is conducted. For example, the invention contemplates retention of the particle size in a final molecular sieve-containing product that corresponds with that of an amorphous cation oxide-framework nutrient used in its manufacture. This invention drives the selection of process conditions to achieve one or more of macro and meso porosity (“large pore composite porosity”) in the final molecular sieve product as a direct product of the hydrothermal reaction producing the molecular sieve. The invention allows the production of a molecular sieve that is in situ incorporated in the framework morphology of a solid cation oxide-framework used in the molecular sieve's manufacture.
摘要:
Method of preparing zeolite single crystals comprising the step of applying a synthesis gel with zeolite precursor composition within pore system and on surface of a particulate matrix material having a predetermined pore structure and particle size; subjecting the precursor composition to crystallising conditions; and isolating porous single crystals of the zeolite by removing the matrix material.