Abstract:
Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH≦8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.
Abstract:
An adsorbent product for the adsorption of trace elements of sulfur, arsenic, mercury, compounds which contain these elements or metal hydrides from a hydrocarbon gas stream, preferably an olefinic or paraffinic stream, wherein the adsorbent product is iron oxide and manganese oxide placed on a support material, preferably aluminum oxide. Also disclosed is a process for the use of this adsorbent product for the removal of trace elements of arsenic, mercury and sulfur or compounds containing those elements or metal hydrides from a hydrocarbon gas stream, preferably an olefinic or paraffinic gas stream.
Abstract:
Mesoporous carbon and method of making involves forming a mixture of a high carbon-yielding carbon precursor that when carbonized yields greater than about 40% carbon on a cured basis, and an additive that can be catalyst metal and/or low carbon-yielding carbon precursor that when carbonized yields no greater than about 40% by weight carbon on a cured basis. When a catalyst metal is used, the amount of catalyst metal after the subsequent carbonization step is no greater than about 1 wt. % based on the carbon. The mixture is cured, and the carbon precursors are carbonized and activated to produce mesoporous activated carbon.
Abstract:
The invention concerns a composite material comprising activated carbon and expanded graphite. The material is a block wherein the activated carbon is homogeneously and uniformly distributed in the form of microporous particles. The texture of said particles is characterised by a microporous volume W0 ranging between 0.1 cm3g−1 and 1.5 cm3g−1 and a mean pore dimension L0 ranging between 2 Å and 30 Å, the activated carbon particles have substantially the same texture wherever they are located in the composite material, the thermal conductivity levels of the material range between 1 and 100 Wm−1K−1. Said material is obtained by heat treatment of a mixture of expanded graphite and an activated carbon precursor in the presence of an activating agent at a temperature and for a time interval sufficient to obtain a wear rate of the activated carbon precursor ranging between 5 and 70% by mass.
Abstract:
A wall-flow filter for an exhaust system of a combustion engine comprises: a plurality of channels in honeycomb arrangement, wherein at least some of the channels are plugged at an upstream end and at least some of the channels not plugged at the upstream end are plugged at a downstream end; an oxidation catalyst on a substantially gas impermeable zone at an upstream end of the channels plugged at the downstream end; and a gas permeable filter zone downstream of the oxidation catalyst for trapping soot, in that in an exhaust system, preferably a diesel exhaust system, the oxidation catalyst, which preferably includes a platinum group metal, is capable of generating sufficient NO2 from NO to combust the trapped soot continuously at a temperature less than 400° C.
Abstract:
A catalyst support having improved attrition resistance and a catalyst produced therefrom. The catalyst support is produced by a method comprising the step of treating calcined &ggr;-alumina having no catalytic material added thereto with an acidic aqueous solution having an acidity level effective for increasing the attrition resistance of the calcined &ggr;-alumina.
Abstract:
A sorbent material is provided comprising a material reactive with sulfur, a binder unreactive with sulfur and an inert material, wherein the sorbent absorbs the sulfur at temperatures between 30 and 200° C. Sulfur absorption capacity as high as 22 weight percent has been observed with these materials.
Abstract:
The invention relates to a material for treating gaseous media containing volatile organic components. According to the invention, the material is porous and exhibits an absorption capacity of approximately 20-30% in relation to the dry weight thereof, containing approximately 47-52% by weight of a composite carbon and silicon structure, approximately 12-20 wt. % carbon, approximately 5-7 wt % hydroxyl, and approximately 1-2 wt % oxygen. The invention can be used in atmospheric treatment for the preservation of living matter.
Abstract:
An enhanced material formed from a carrier material having a high porosity. The carrier material is treated with a mixture of hydrocarbons to increase the adherence of the carrier material particles to one another to minimize atmospheric contamination of the carrier materials in use. The material has particular applicable to environments where such contamination would create problems, such as food processing and preparation environments, computer operations, electronic component manufacturing and other environments. The material meets the requirements of FDA regulations for Indirect Food Contact.
Abstract:
The invention relates to a process for the production of shaped activated carbon by steam activation in an continuously operating rotary tunnel kiln, by continuously drying spherically preformed raw materials in a rotary tunnel dryer with 6-fold product turnover per kiln rotation, with a product temperature of from 250 to 300° C. in the 50 to 80% kiln length range and a residence time of from 30 to 6O minutes by means of a hot gas in countercurrent, then, in an indirectly heated rotary tunnel kiln, which is subdivided into a carbonising zone and activating zone, continuously carbonising the material with 8-fold product turnover per kiln rotation and with a product temperature profile in the carbonising zone of from 850 to 900° C. and a residence time of from 120 to 180 minutes, and activating the material with a product temperature profile in the activating zone of from 910 to 920° C. and a residence time of from 480 to 720 minutes with the addition of steam in an inert-gas flow.