Abstract:
A compound is represented by a formula (1) below. D is a group represented by a formula (11), (12) or (13) below; at least one D is a group represented by the formula (12) or (13); at least one R is a substituent; and a sum of the number of R serving as a substituent and the number of a group represented by the formula (12) or (13) is 3 or 4.
Abstract:
The invention provides compounds that inhibit FTO (fat mass and obesity), including pharmaceutically acceptable salts, hydrides and stereoisomers thereof. The compounds are employed in pharmaceutical compositions, and methods of making and use, including treating a person in need thereof, particularly obesity, with an effective amount of the compound or composition, and detecting a resultant improvement in the person's health or condition.
Abstract:
The present invention describes compounds and uses thereof in applications relating to absorption of electromagnetic energy. Preferred compounds are double bond-containing cyclic compounds capable of absorbing electromagnetic radiation energy and having improved photostability due to the presence and location of one or more fluorine groups in relation to the double bond of the ring.
Abstract:
The present invention relates to a process for the preparation of Compound (A): wherein the process comprises contacting atazanavir base (Compound (II)) with sulphuric acid in a combination of two or more solvents and isolating compound (A). The present invention also relates to substantially pure Compound (A), and to Compound (A) devoid of mesityl oxide impurity. Mesityl oxide has the following formula:
Abstract:
This invention includes ionizable compounds, and compositions and methods of use thereof. The ionizable compounds can be used for making nanoparticle compositions for use in biopharmaceuticals and therapeutics. More particularly, this invention relates to compounds, compositions and methods for providing nanoparticles to encapsulate active agents, such as nucleic acid agents, and to deliver and distribute the active agents to cells, tissues, organs, and subjects.
Abstract:
The invention relates to compounds corresponding to formula (I): in which R2 and R3 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to one of formula (A), (B) or (C) below: in which the wavy lines represent the phenyl nucleus to which R2 and R3 are attached. Preparation process and therapeutic use.
Abstract:
Provided are a process for preparing an N ortho acyl substituted nitrogen-containing heterocyclic compound and an aminal iron (II) complex thereof, and the use of the complexes obtained by the process in an olefin oligomerization catalyst. The N ortho acyl substituted nitrogen-containing heterocyclic compound in the present invention is for example 2-acyl-1,10-phenanthroline or 2,6-diacetyl pyridine as shown in formula b, and the N ortho acyl substituted nitrogen-containing heterocyclic compound in the present invention is produced by a reaction of a precursor thereof in a substituted or unsubstituted nitrobenzene. Preferably the precursor shown in formula I in the present invention is produced by 1,10-phenanthroline reacting with trialkyl aluminum, or a halogenoalkyl aluminum RnAIXm, or a substituted or unsubstituted benzyl lithium Ph′CH2Li, followed by hydrolysis. The preparation method provided in the present invention has a few synthetic steps, an easy process, a low toxic effect, and reduces the preparation costs of the catalyst, and has a promising outlook in the industrial application.
Abstract:
1-Phenyl-2-pyridinyl alkyl alcohol compounds are effective as inhibitors of the phosphodiesterase 4 (PDE4) enzyme and may be used to prevent and/or treat certain diseases or conditions.
Abstract:
A novel process for the synthesis of 4-aryl 4-acyl piperidine derivatives using indium metal is described. Specifically, a novel process for the synthesis of 4-acetyl 4-phenyl piperidine and its salts using indium metal is described.
Abstract:
The present disclosure relates to HIF-1α prolyl hydroxylase inhibitors, compositions which comprise the HIF-1α prolyl hydroxylase inhibitors described herein and to methods for controlling, inter alia, Peripheral Vascular Disease (PVD), Coronary Artery Disease (CAD), heart failure, ischemia, and anemia.